

Route 1

Milepost 8 to 14.5 From CR 533 (Quakerbridge Rd) to Ridge Rd

2019 NJ Asphalt Paving Conference

VAHID GANJI, Ph.D., P.E. YASHVI PATEL, P.E. Pavement Designer: Vahid Ganji, Ph.D., P.E., Michael Baker International

Yashvi Patel, P.E., NJDOT

Pavement Designer:

Field Manager:

Resident Engineer:

Assistant RE:

Prime Contractor:

Subcontractor:

George Carroll

Rajesh Kabaria

Yashvi Patel, P.E.

Della Pello Paving

Trap Rock Industries

Pavement Evaluation

Pavement Evaluation Scope of Work

- Ground Penetrating Radar (GPR) Testing
- Coring
- Falling Weight Deflectometer (FWD) Testing
- Visual Pavement Distress Survey
- As-Built Review
- Roadway Geometry Survey
- Pavement Design Recommendation
- Project Cost Estimate

Benefits of GPR Testing:

Increased Safety

No Interruptions to Traffic

Cost-Savings

Continuous Data

Continuous Pavement Layer Thicknesses Compared to Individual Cores

Typical GPR Results

Typical GPR Results

Continuous Pavement Layer Thicknesses Compared to Individual Cores (Literally at Speed of Light)

Contact: Vahid Ganji, Ph.D., P.E. | Pavement Department Manager | Michael Baker International

300 American Metro Boulevard | Hamilton, NJ 08619 | [0] 609-807-9557 | [M] 732-648-9002 vganji@mbakerintl.com | www.mbakerintl.co

FWD Testing

Benefits of FWD Testing:

Nondestructive

Simulates Wheel Loads

Fast (1 min/test)

Cost-Savings

Objective Data Highly Recommended by FHWA

As-Built Review

Visual Pavement Distress Survey

Remaining Service Life Analysis and Pavement Design

Pavement Sectionalization

Minimum 10 years Required

Prepared By: V. Ganij 05/24/13

Route 1 NB (MP 12.0 - 14.4) and Route 1 SB (MP 8.5 - 9.2, MP 9.6 - 10.8, and MP 12.1 - 14.0)

Table 1. Summary of Pavement Evaluation and Service Life Analysis for Route 1 Northbound

			9					Slab Joint				Eleo	rible			Expected Service Life (Years) after															
		Milepost						Performance		Performance		nce	Pavements					Mill 2.0 in &				Mill 3.0 in &				Mill 4.0 in &					Comments
Section No.	Pavement Type	From	10	Approximate HMA Thickness (in)	Approximate PCC Thickness (in)	Normalized Pavement Deflection (mils)	Average HMA Modulus (ksi)	Average POC Modulus (ksi)	Moduks of Subgrade Reacton (psi/in)	Normalized Joint Deflection (mils)	Load Transfer (%)	Joint Intercept (mils)	Effective Structural Number	Subgrade Resilent Modulus (psi)	General Pavement Conditions	Main Distresses	2.0 in HMA Overlay	2.5 in HMA Overlay	3.0 in HMA Overlay	3.5 in HMA Overlay 4.0 in HMA Overlay	3.0 in HMA Overlay	3.5 in HMA Overlay	4.0 in HMA Overlay	4.5 in HMA Overlay	5.0 in HMA Overlay	4.0 In TWA Ovenay	5.0 in HMA Overay	5.0 In HMA Overlay	5.0 in HMA Ovenay 6.0 in HMA Ovenay	Reconstruct	General Notes: Perform pavement repairs with HMA patch after milling if deteriorated pavement is observed. This will be an incidental "If & Where Directed" item.
01	Flexible	309+30 MP 11.98	315+60 MP 12.10	14	0	3.1	600					-	9.7	12000	Good	16L	>20	>20	>20 >	20 >2	20 >2	0 >20	>20	>20 :	20 >	20 >	20 >	20 >	20 >2	0	Not part of project. Resurfaced circa 2010
02	Flexible	315+60 MP 12.10	391+00 MP 13.53	9	0	9.9	140						4.8	9600	Poor	Lane(s): 1L, 13L-H, 16M, 4M, 5M-H, 7M, 8M-H; Shoulder: 13L, 2L, 4L	6	8	10	13 13	7 8	10	13	16 :	•20 1	10	13 1	16 >	20 >2	0	Resurfaced Circa 2005
03	Composite	391+00 MP 13.53	410+00 MP 13.89	7	9	4.3	280	8900	80	8.0	79	1.00		1	Poor	Lane(s): 5M-H; Shoulder: 13L, 4L	7	9	10	12 14	4 8	9	11	13	15	8 1	10 1	12 1	14 17	7	Resurfaced Circa 2005
04	Composite	410+00 MP 13.89	421+50 MP 14.10	7	9	3.5	270	11700	90	6.0	100	0.00			Poor	Lane(s): 13L, 16H, 5H, 9L; Shoulder: 13L	13	15	18 >	20 >2	20 14	17	20	>20 :	20 1	15 1	8 >	20 >	20 >2	0	Resurfaced Circa 2005
05	Composite	421+50 MP 14.10	439+15 MP 14.43	5	9	3.8	280	11200	90	5.0	87	0.00		-	Poor	Lane(s): 1L, 13L-M, 5H, 8M-H, 9L; Shoulder: 13L	7	8	10	12 14	4 7	9	11	13	15	8 1	10 1	12 1	14 17	,	Resurfaced circa 2005.

Notes: Average 20-Year Design Flexible and Rigid ESAL's is 22,460,000 and 34,830,000, respectively.

SHRP LTPP Distress Codes:

Baker

* 1: Fatigue Cracking, 2: Block Cracking, 3:Edge Cracking, 4: Longitudinal Cracking, 5: Reflection Cracking, 6: Transverse Cracking, 7: Patches, 8: Potholes, 9: Rutting, 10: Shoving, 13: Raveling, 14: Lane-to-Shoulder Dropoff

16: Construction Joint Deterioration (Not a SHRP LTPP Code), 17: Topdown Cracking (Not a SHRP LTPP Code), 18: Joint/Slab Blowup (Not a SHRP LTPP Code)

L: Low Severity, M: Medium Severity, H: High Severity

Pavement sectionalization involves analytical sections – sections with uniform pavement type and thickness, traffic loading, and pavement condition. For practical reasons and constructability, the analyzed sections are combined for pavement rehabilitations. Other factors such as schedule, geometry constraints, project needs other than pavement, and budget during PE and FE need to be considered before final pavement design recommendation.

Pavement Design Recommendations Summary

Pavement Design Recommendations Summary

Cost Estimate

Baker

Task Order 2, Pavement Project Scoping and Design Route 1 NB (MP 12.0 - 14.4) and Route 1 SB (MP 8.5 - 9.2, MP 9.6 - 10.8, and MP 12.1 - 14.0) Prepared BY: V. Ganji Checked By: M. Graubart Date: 5/29/2013 Date: 5/30/2013

Table 5. Cost Estimate for Route 1 NB (MP 12.0 - 14.4) and Route 1 SB (MP 8.5 - 9.2, MP 9.6 - 10.8, and MP 12.1 - 14.0)

				Analysis Period= 10	0	Base Year=	2014		
				Discount Rate Applied= 2.	.7%	Region=	North		
A	terna	ative 1: Mill a	nd Overlay	Project Length= 35	5,537	(6.73 Miles)	(One Direction	al Length)	
		ITEM	DESCRIPTION		UNIT	UNIT COST	QUANTITY	COST	NPV
Г		Initial Rehabili	tation: Mill and Overlay	Project Classification: 4.	. Resurfac	ing	Project Cos	st Category:	\$5 to \$10 Million
		401009P	HMA MILLING, 3" OR LESS		SY	\$3.50	215,000	\$753,000	
		401012P	HMA MILLING, MORE THAN 3" TO 6"		SY	\$4.20	38,000	\$160,000	
		404006M	STONE MATRIX ASPHALT 12.5 MM SURFACE COURSE		т	\$100.00	21,000	\$2,100,000	
L		401054M	HOT MIX ASPHALT 12.5 M 64 SURFACE COURSE		Т	\$80.00	11,000	\$880,000	
		401072M	HOT MIX ASPHALT 12.5 M 64 INTERMEDIATE COURSE		Т	\$70.00	10,000	\$700,000	
		401030M	TACK COAT		GAL	\$3.25	24,000	\$78,000	
		401021M	HOT MIX ASPHALT PAVEMENT REPAIR		SY	\$80.00	100	\$8,000	
	ŝ	453006M	FULL DEPTH CONCRETE PAVEMENT REPAIR, HMA		SY	\$170.00	250	\$43,000	
14	EAI	610003M	TRAFFIC STRIPES, LONG LIFE, EPOXY RESIN 4"		LF	\$0.60	95,000	\$57,000	
20	2	652432M	RESET MANHOLE, SANITARY SEWER, USING EXISTING CASTING		U	\$500.00	30	\$15,000	
AB	20	401027M	POLYMERIZED JOINT ADHESIVE		LF	\$0.55	180,000	\$99,000	
ž	ğ	020011C21E	PERFORMANCE BOND AND PAYMENT BOND		LS	\$42,500.00	1	\$43,000	
≿	AN	020011D21C	FINAL CLEANUP		LS	\$10,000.00	1	\$10,000	
2	N N	020011E21C	CONSTRUCTION LAYOUT		LS	\$50,000.00	1	\$50,000	
ō	5	020011G13I	OWNER'S AND CONTRACTOR'S PROTECTIVE LIABILITY INSURANCE	DE	LS	\$10,000.00	1	\$10,000	
٩	Ë	020011H21C	PROGRESS SCHEDULE		LS	\$10,000.00	1	\$10,000	
L	•	020011F21D	FUEL PRICE ADJUSTMENT		LS	\$32,000.00	1	\$32,000	
L		020014D21E	ASPHALT PRICE ADJUSTMENT		LS	\$138,000.00	1	\$138,000	
L		020012A21C	CLEARING SITE		LS	\$50,000.00	1	\$50,000	
L				Ye	ear 2014 \$	Subtotal		\$5,300,000	
				7	% Mainte	on of Traffic	\$380,000		
		020011H21D	MOBILIZATION	12	2 % Mobil	\$690,000			
1				5	% Contin	gency	\$320,000		
1				t Value		\$0,700,000	¢6 700 000		
L				N	et Presen	i value			φ 0 ,700,000

Estimated Pavement Cost \$6.7 Million (Pavement Only)

Pavement Recommendation

- Surface Distress Index (SDI): 1.84
- Existing International Roughness Index (IRI): 128 in/mile
- 20 years design ESAL's: ~ 34.93 million for composite pavement & 22.46 million for flexible pavement in the northbound direction and 28.57 million and 18.30 million in the southbound direction.
- Treatment Performance: last treatment performed on this section was mill 2" and pave 2" Surface Course in 2005
- Overlay Design consisted of milling 3" depth and resurfacing with:
 - 2" Stone Matrix Asphalt 12.5 MM Surface Course
 - 1" Binder Rich Intermediate Course, 4.75 MM

Binder Rich Intermediate Course, 4.75 MM

- Evaluated changes in SDI to evaluate performance of BRIC on New Jersey pavement sections
- BRIC analysis is difficult as it is always overlaid with a surface course
 - Compared performance with and without BRIC
 - Compared performance with different surface courses
 - Compared performance life for different scenarios
- Performance of BRIC material highly dependent on the surface course overlaying the BRIC

BRIC – Performance Analysis

SDI

ø15/2019

Surface Preparation & Issues

- Full Depth HMA Repair
- Manhole Reset
- Milling
- Tack Coat
- Forestdale Road Bridge

Test Strip

BRIC

- Location: Trap Rock Plant
- Number of rollers

SMA

- Location: Route 1
- Number of rollers

Material Usage

BRIC

Total: 13349 T Average Night: 785 T Number of Nights: 17 SMA Total: 25826 T Average Night: 1614 T Number of Nights: 16

Ride Quality

- Before Paving
 SDI: 1.84
 Existing IRI: 128 inch/mile
 Target IRI: 63 inch/mile
 Required improvement: ~ 50%
- After Paving
 SDI: 5.0
 IRI: 43.8 Inch/mile
 Provided Improvement: ~ 66%

Exclusions

- NB Lane 1 2
- NB Lane 2 2
- NB Lane 3 10
- NB Lane 4 35

- SB Lane 1 13
- SB Lane 2 19
- SB Lane 3 26
- SB Lane 4 56

IRI

Number of Lots

Air voids

- BRIC
 - Requirement: 0-6%
 - Achieved: 3.49% (avg)
 - Achieved rang: 1.4-7.4%
 - Bonus: 0.78%

- SMA
 - Requirement: 1-7%
 - Achieved: 3.88% (avg)
 - Achieved rang: 2.4-6%
 - Bonus: 4% (Maximum)

