## I-295/I-76/Route 42 Direct Connection

Camden County



Presented by: Chris Baldwin, PE – Dewberry







#### **Presentation Outline**

- Project Overview
- Contract Breakout
- Geotechnical Factors
- Pavement Condition, Analysis, and Recommendations
- Underdrains and Internal Drainage
- Stone Matrix Asphalt
- Questions





#### **Regional Map**

Dewberry





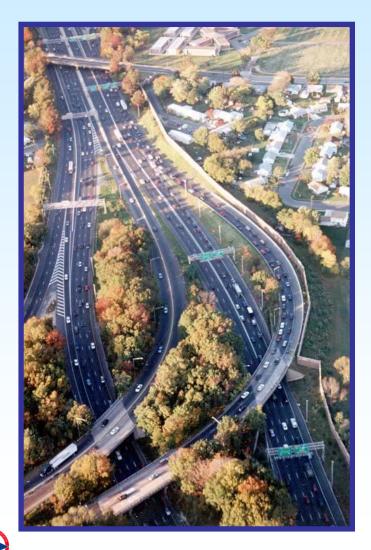
#### **Project Location and Constraints**

Dewberry








#### **Project Purpose and Need**

- Purpose: Relieve the bottleneck through the interchange by constructing a direct connection for I-295 mainline
- Improvements will reduce congestion and traffic weaves, and enhance traffic operations and safety.
- Resilient pavement box that will support the high volume of heavy vehicles on a daily basis and reduce the pavement maintenance schedule










## **Pre-2013 Interchange Issues**

- High Traffic volumes exceeding 392,000 vehicles per day
- High percentage of heavy vehicles
- High accident rates
- Through traffic weaving movements
- Aging and deteriorating pavement



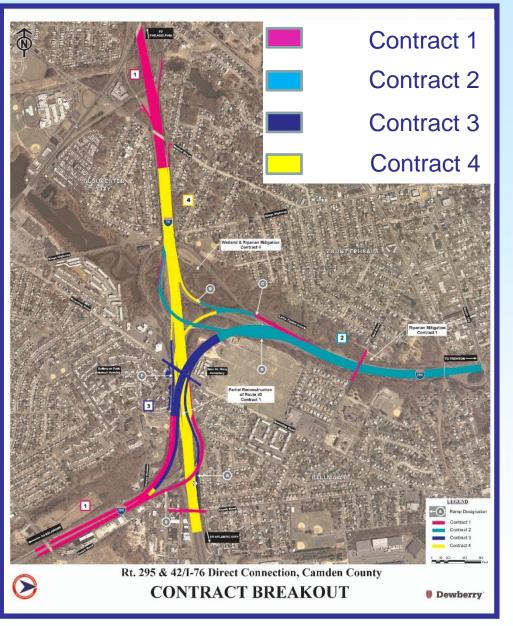


#### **Proposed Improvements**










## **Design Considerations**

- MPT / Maintain # of traffic lanes
- Tight work zones
- Material placement and compaction
- Groundwater / Seepage
- Settlement / Soil conditions
- Coordination between contracts







#### **Contract Breakout**

#### **Contract Breakout Criteria**

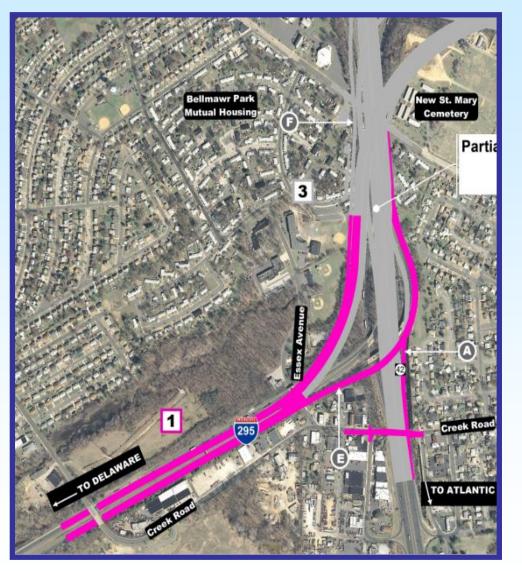
- Less than \$200 million
- Minimize overlap and potential for delays





# Contract 1 Awarded PKF Mark-III Inc. \$159.9 Million

Start Construction February 2013




## Completed November 2016



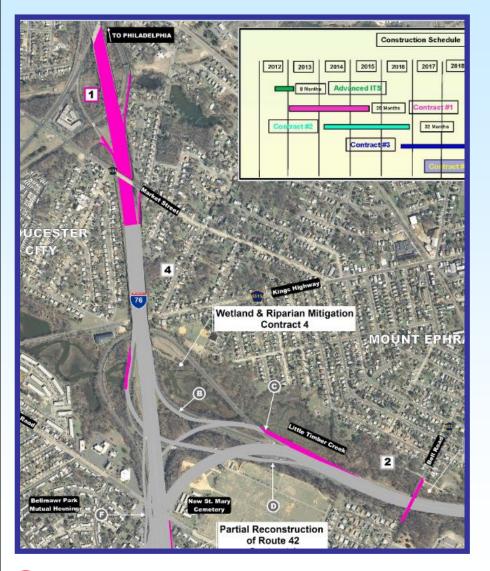


#### **Contract 1 - South and West of Browning Rd**



#### I-295 Corridor (Creek Rd to Essex Ave)

- Essex Ave Bridge
- I-295 SB and Wall 19
- Ramp E Bridge / Wall 15
- Walls 13/14 along I-295 NB and Ramp E


#### Route 42 Corridor (Leaf Ave to Browning Rd)

- Interim Ramp A
- Wall 16/17/Ramp A Pier Columns along Route 42/Fir Place
- Creek Rd Bridge
- Traffic signals on Creek Rd at Edgewood & Harding Avenues
- 60" pipe jacking under Route 42

Dewberry



#### **Contract 1 - North and East of Browning Rd**



#### I-76 Corridor

- Lower I-76 at Market Street
- Wall 11 at Ramp D

#### Work along I-76 completed using:

- Accelerated construction
- Weekend closures of Market St and Route 130 SB Ramps

#### I-295 Corridor

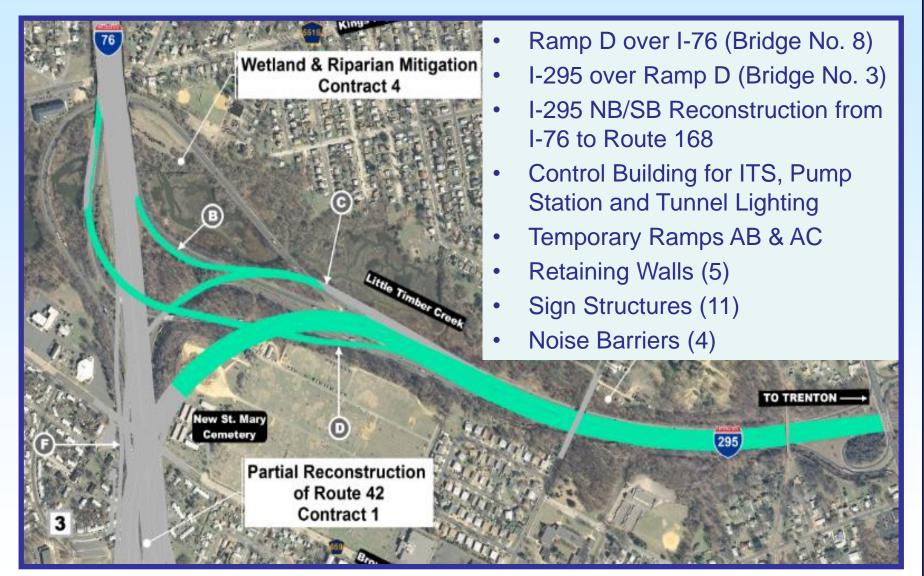
- Bell Rd Bridge
- Wall 8 along Little Timber Creek
- □ Sign structures (18)
- Noise Walls (2)





# Contract 2 Awarded to Conti Enterprises, Inc. \$152.6 Million

Start Construction June 2014




## Completed November 2019





#### Contract 2 – I-76 to Route 168







## Contract 2 – Ramp D



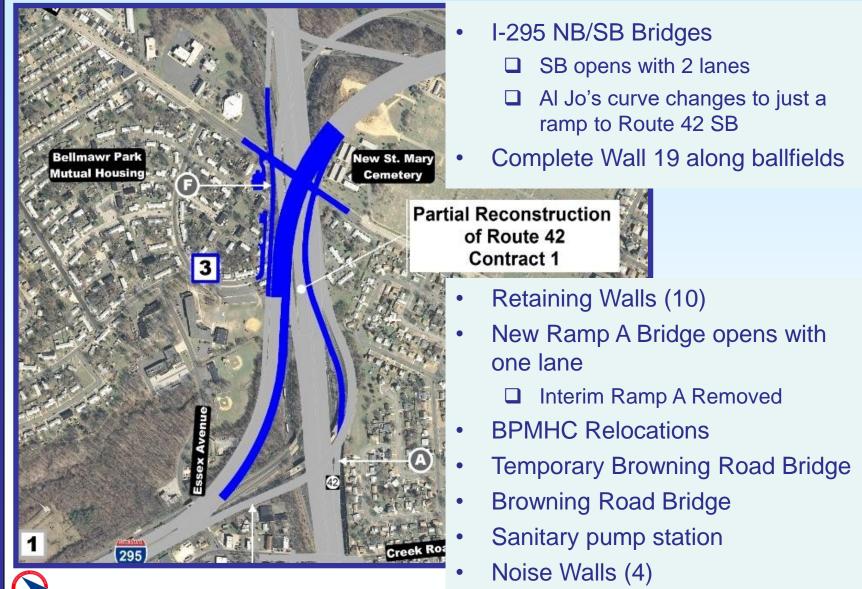






# Contract 3 Awarded to South State, Inc. \$192.1 Million

Start Construction March 2017




## Anticipated Completion December 2022





#### **Contract 3**





## Contract 3 – I-295









## **Contract 4 – Final Design 2020**

#### Construction Fall 2021

## Anticipated Completion Winter 2025








#### **Contract 4**

- Complete I-76/Route 42
- New Ramp F (I-76 EB to I-295 SB) opens eliminates the existing left hand exit
- New I-295 NB opens express lanes eliminated
- New Ramp C (I-295 SB to Route 42 SB) covered roadway opens
- Remove Al-Jo's Curve







#### **Contract 4 – Ramp B & Ramp C**








#### **Contract 4 – Removal of Al Joe's Curve**







#### **Contract 4 – Route 42/I-76**









#### **Construction Schedule**

| -295/I-76/ Route Dire<br>Construction Schedul |      | ١    |      |      | C    | O    | MP   | LE   | TE   | D    |      | I                | 0    | NG   | <b>SOI</b> | NG   |
|-----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------------------|------|------|------------|------|
| Contract                                      | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 202 <sup>.</sup> | 2022 | 2023 | 2024       | 2025 |
| Advance ITS                                   |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Final Design                                  |      | (    |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Construction                                  |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Contract 1                                    |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Final Design                                  |      |      | 1    |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Construction                                  |      |      |      |      | 1    |      |      |      |      |      |      |                  |      |      |            |      |
| Contract 2                                    |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Final Design                                  |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Construction                                  |      |      |      |      |      |      |      | 1    |      |      |      |                  |      |      |            |      |
| Contract 3                                    |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Final Design                                  |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Construction                                  |      |      |      |      |      |      |      |      |      |      |      |                  |      | l    |            |      |
| Contract 4                                    |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Final Design                                  |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            |      |
| Construction                                  |      |      |      |      |      |      |      |      |      |      |      |                  |      |      |            | _    |







# **Geotechnical Factors**





#### **Subsurface Investigation**

2005 Preliminary investigation of 10 borings

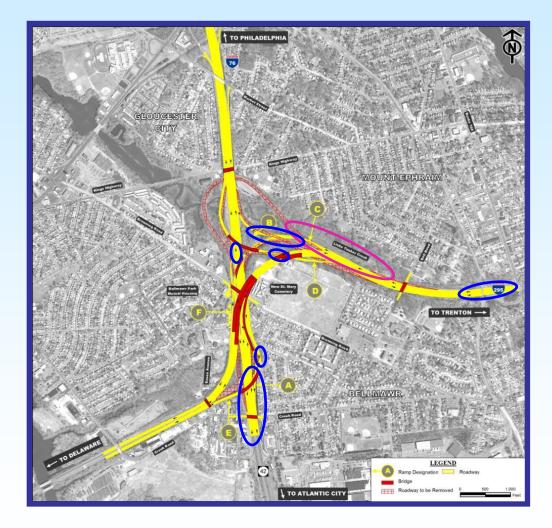
- > 2009 Full investigation of 700 borings and 25 pavement cores
- Since 2010 Supplemental borings and pavement cores taken as needed
- Boring depths range from 15 ft to 180 ft
- Subsurface profiles generally consist of medium dense sand overlying soft to hard cohesive soils





#### **Subsurface Investigation**

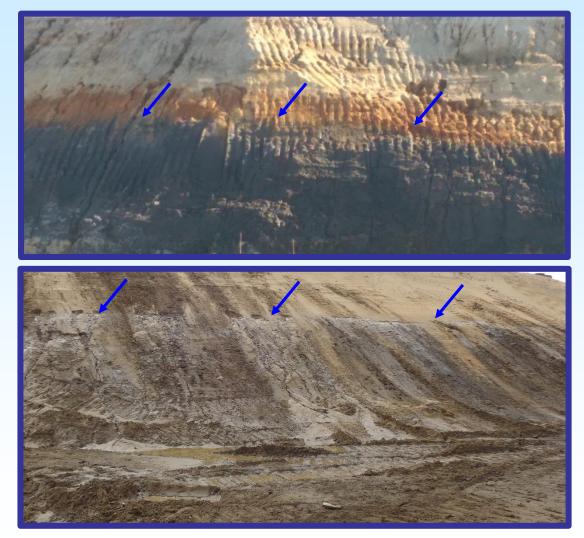
Impacts on Pavement Design:


- How to provide roadway support that will be built on embankments that are constructed on settlement prone soft clay?
- How to manage potential groundwater seepage in roadway built in areas with shallow groundwater table?
- How to provide a dry roadway built below groundwater table?





#### **Subsurface Investigation**


- Identified problem areas with weak soils such as Little Timber Creek
- Installed numerous monitoring wells to establish baseline groundwater level and areas of shallow groundwater in relation to final elevations
- Ramp C profile in a cut section and will be built below groundwater table in Contract 4

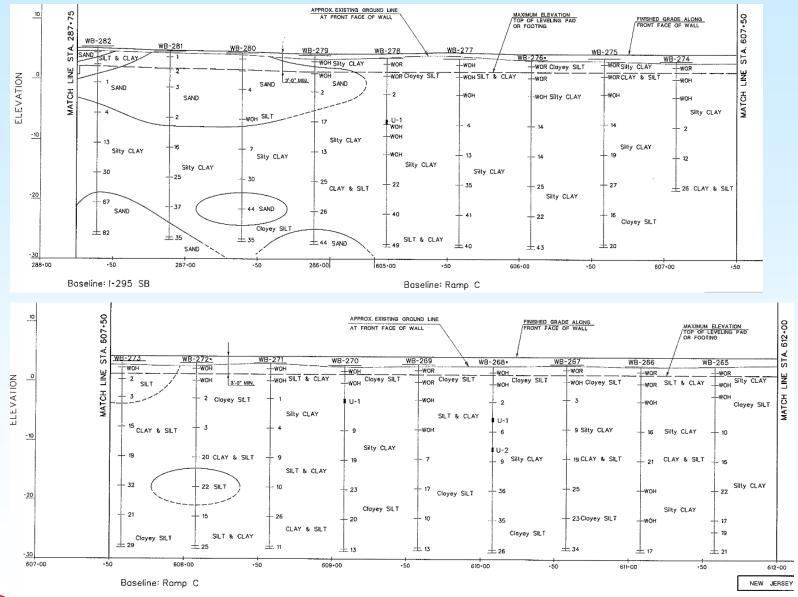


Dewberry



#### Adverse Conditions - Perched Groundwater Condition Slope Seepage




Soil Stratification (Sand over Clay) dipping into cut slope

Seasonal Seepage along sand-clay interface after rough grading





#### **Geologic Profile**





#### **Ramp C Profile**



- Grade raised by as much as 30 ft and cut as much as 25 ft
- How to build embankment without settlement to handle new pavement and roadway loading
- Ground improvement using load transfer mats and rigid grout columns
- Bypasses surficial weak soil to more competent underlying layers







# Pavement Conditions, Analysis, and Recommendations





## **Existing Pavement Conditions**

- Generated existing conditions via available as-built information and pavement core data
  - ✓ 2009 I-295 Gloucester/Camden Rehabilitation
  - ✓ 1996 I-76
  - ✓ 1957 Bell Road
  - ✓ 1955 Browning Road and Creek Road
- Roadway sections consist of both full depth HMA and composite sections
- Local roads consist of approximately 4-8 in. HMA. Highways range from 10-16 in. HMA. All pavement boxes include some form of compacted, granular subbase





#### **Existing Pavement Conditions**

Pavement Core records included in Contract Documents
 Cores show variable thickness of HMA and sections of composite pavement on local roadways and highways

| DATE STARTED: 9-15-2009 DATE COMPLETED: 9-17-2009 |                                   |                                   |                       |                  |                  |  |  |  |
|---------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------|------------------|------------------|--|--|--|
| DATE STARTED DATE CONFLETED                       |                                   |                                   |                       |                  |                  |  |  |  |
| CORE NUMBER                                       | PC-21                             | PC-22                             | PC-23                 | PC-24            | PC-25            |  |  |  |
| ROUTE                                             | Creek Rd                          | Essex Ave                         | Victory Drive         | Browning Road    | Kings Hwy        |  |  |  |
| DIRECTION<br>(N, E, S, W)                         | EB                                | SB                                | EB                    | WB               | WB               |  |  |  |
| MILE POST<br>(MP or Station)                      | 827+25                            | 804+60                            | 921+50<br>(Ramp F BL) | 847+90           | 869+20           |  |  |  |
| LANE NO.<br>(Left to Right)                       | 1                                 | 1                                 | 1                     | 1                | 1                |  |  |  |
| SHOULDER<br>(Inside or Outside)                   | -                                 | -                                 | -                     | -                | -                |  |  |  |
| HOLE DIAMETER<br>(Inches)                         | 4"                                | 4"                                | 4"                    | 4"               | 4"               |  |  |  |
| TOTAL CORE DEPTH<br>(Inches)                      | 5"                                | 4"                                | 7"                    | 10"              | 9"               |  |  |  |
| CORE DRILLED TO                                   | 7" crushed stone<br>over c-f Sand | 6" Crushed stone<br>over c-f Sand | Gravel subbase        | c-f Sand subbase | c-f Sand subbase |  |  |  |
| SURFACE TYPE<br>(AC/PC)                           | AC                                | AC                                | AC                    | AC               | PC               |  |  |  |
| AC THICKNESS<br>(Inches)                          | 5"                                | 4"                                | 7"                    | 2"               | -                |  |  |  |
| PC THICKNESS<br>(Inches)                          | -                                 | -                                 | -                     | 8.5"             | 9"               |  |  |  |

\* Lane 1 is the left lane in the direction of travel.







#### **Existing Pavement Conditions**

Pavement Core records included in Contract Documents
 Cores show variable thickness of HMA and sections of composite pavement on local roadways and highways

| DATE STARTED: 9-15-2009 DATE COMPLETED: 9-23-2009 |                |                 |                  |              |                |  |  |  |
|---------------------------------------------------|----------------|-----------------|------------------|--------------|----------------|--|--|--|
| CORE NUMBER                                       | PC-16          | PC-17           | PC-18            | PC-19        | PC-20          |  |  |  |
| ROUTE                                             | I-76 Local     | I-76 Express    | I-76 Express     | I-76 Local   | I-76 Express   |  |  |  |
| DIRECTION<br>(N, E, S, W)                         | WB             | WB              | WB               | WB           | WB             |  |  |  |
| MILE POST<br>(MP or Station)                      | 121+00         | 128+00          | 138+00           | 140+00       | 145+00         |  |  |  |
| LANE NO.<br>(Left to Right)                       | -              | -               | -                | 1            | -              |  |  |  |
| SHOULDER<br>(Inside or Outside)                   | Outside        | Outside (right) | Outside (right)  | -            | Inside (right) |  |  |  |
| HOLE DIAMETER<br>(Inches)                         | 4"             | 4"              | 4"               | 4"           | 4"             |  |  |  |
| TOTAL CORE DEPTH<br>(Inches)                      | 13"            | 12"             | 12"              | 13"          | 11"            |  |  |  |
| CORE DRILLED TO                                   | Gravel subbase | Gravel subbase  | c Gravel subbase | Sand subbase | Sand subbase   |  |  |  |
| SURFACE TYPE<br>(AC/PC)                           | AC             | AC              | AC               | AC           | AC             |  |  |  |
| AC THICKNESS<br>(Inches)                          | 13"            | 12"             | 12"              | 4"           | 11"            |  |  |  |
| PC THICKNESS<br>(Inches)                          | -              | -               | -                | 9" - Rebar   | -              |  |  |  |

\* Lane 1 is the left lane in the direction of travel.



Dewberry



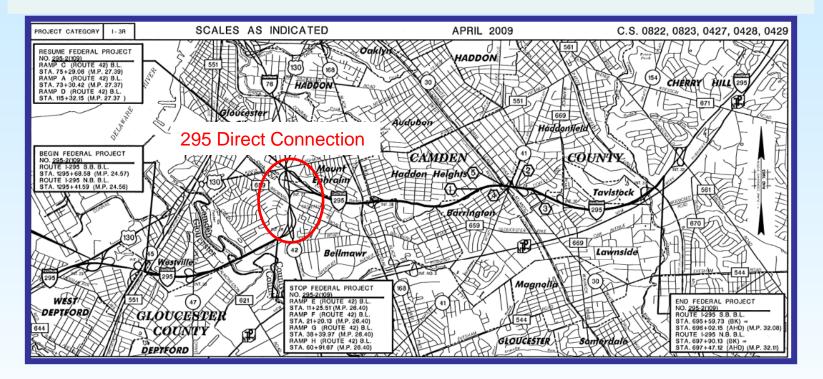
#### **Pavement Cross Section**







## **Pavement Design and Recommendations**


- Considered adjacent rehab project on 295 NB/SB to the immediate north and south of 295 Direct Connection project limits
- Pavement Design data, ADT, and truck percentages provided by NJDOT in 2009 for I-295, Route 42 and I-76
- Directional distributions provided by NJDOT via traffic counts
- Consider the soil conditions and groundwater conditions from the subsurface investigation





## **Pavement Design and Recommendations**

### 295 Gloucester/Camden Rehabilitation Contract No. 024003720



- New pavement proposed up to the boundary of the I-295 limits
- Integrated the new pavement box with the I-295 portion of the Direct Connection Project





## **Pavement Design and Recommendations**

- Pavement Analysis performed with DARWIN Pavement Design System, v. 2.01 and 1993 AASHTO Guide for the Design of Pavement Structures
- 30 year design life for sections of new pavement and 20 year design life in areas for milling and paving. Less rigid requirements of mill/pave to allow for greater use of existing pavement
- Initially HMA 12.5M76 Surface course was recommended but later revised to Stone Matrix Asphalt Surface 12.5M Course as a more durable option





### **Design Data**

### I-295 MP 26.03 – MP 28.06

### PAVEMENT DESIGN DATA

| 2009 ADT (one way)             | = | 71,920 VPD  |
|--------------------------------|---|-------------|
| 2017 ADT (one way)             | = | 82,340 VPD  |
| 2045 ADT (one way)             | = | 131,480 VPD |
| 2045 Heavy Truck % in 24 hours | = | 10%         |
| 2045 Total Truck % in 24 hours | = | 16%         |

### I-76 MP 0.00 – MP 1.15

### PAVEMENT DESIGN DATA

| 2009 ADT (one way)             | = | 83,755 VPD  |
|--------------------------------|---|-------------|
| 2017 ADT (one way)             | = | 95,920 VPD  |
| 2045 ADT (one way)             | = | 154,205 VPD |
| 2045 Heavy Truck % in 24 hours | = | 4%          |
| 2045 Total Truck % in 24 hours | = | 12%         |

### Route 42 Sections 13 & 14 MP 13.82 – MP 14.28

#### PAVEMENT DESIGN DATA

| 2009 ADT (one way)             | = | 73,685 VPD  |
|--------------------------------|---|-------------|
| 2017 ADT (one way)             | = | 88,320 VPD  |
| 2045 ADT (one way)             | = | 166,485 VPD |
| 2045 Heavy Truck % in 24 hours | = | 4%          |
| 2045 Total Truck % in 24 hours | = | 8%          |

 Data provided by NJDOT in 2009 for I-295, Route 42, and I-76





# **DARWIN Design**

### I-295 MP 26.03 – MP 28.06

### New pavement for 30 year design life

### Flexible Structural Design Module Data

| 18-kip ESALs Over                     |            |       | Speci                         | ified Laye | r Desigr | ı         |        |            |
|---------------------------------------|------------|-------|-------------------------------|------------|----------|-----------|--------|------------|
|                                       |            |       |                               |            |          |           |        |            |
| Initial Performance Period:           | 91,907,335 |       |                               | Struct.    | Drain.   |           |        |            |
| Initial Serviceability:               |            |       |                               | Coef.      | Coef.    | Thickness | Width  | Calculated |
| Terminal Serviceability:              | 2.5        | Layer | Material Description          | (Ai)       | (Mi)     | (Di) (in) | _(ft)_ | SN         |
| Reliability Level (%):                | 95         | 1     | SMA12.5H76                    | .44        | 1        | 2         | -      | .88        |
| Overall Standard Deviation:           | .44        | 2     | HMA19M76                      | .44        | 1        | 3         | -      | 1.32       |
| Roadbed Soil Resilient Modulus (PSI): | 5,500      | 3     | HMA25M64                      | .4         | 1        | 7.5       | -      | 3.00       |
| Stage Construction:                   | 1          | 4     | Asphalt Stabilized Drainage C | .44        | 1        | 4         | -      | 1.76       |
|                                       |            | 5     | Dense Graded Aggregate        | .14        | 1        | 10        | -      | 1.40       |
| Calculated Design Structural Number:  | 7.93       | Total | -                             | -          | -        | 26.50     | -      | 8.36       |

#### **Rigorous ESAL Calculation**

| Performance Period (years):               | 30       |
|-------------------------------------------|----------|
| Two-Way Daily Traffic (ADT):              | 159,007  |
| Number of Lanes In Design Direction:      | 4        |
| Percent of All Trucks In Design Lane (%): | 50       |
| Percent Trucks In Design Direction (%):   | 51       |
| Growth:                                   | Compound |
|                                           | -        |

|       | Percent | Annual   | Average Initial Truck | Annual % Growth | Accumulated 18K ESALs   |
|-------|---------|----------|-----------------------|-----------------|-------------------------|
| Class | of ADT  | % Growth | Factor (ESALs/truck)  | in Truck Factor | over Performance Period |
| 2     | 84      | 1.688    | .0006                 | .5              | 312,298                 |
| 4     | 6       | 1.688    | .327                  | .5              | 12,157,317              |
| 6     | 10      | 1.688    | 1.282                 | .5              | 79,437,720              |
| Total | 100.00  | -        | -                     | -               | 91,907,335              |



# **DARWIN Design**

## I-76 MP 0.00 – MP 1.15/Route 42 Sections MP 13.82 – MP 14.28

### New pavement for 30 year design life

#### Flexible Structural Design Module Data

| Initial Performance Period: 65,951,425                                                                                                                                                                                                                                 |                                                                              |                                     |                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| Initial Serviceability:4.2Struct.DrTerminal Serviceability:3Coef.Coef.Reliability Level (%):95LayerMaterial Description(Ai)Overall Standard Deviation:.441SMA 12.5 Surface.44Roadbed Soil Resilient Modulus (PSI):5,5002HMA 19M76 Interm44Stage Construction:14DGA.141 | ain.<br>bef. Thickness<br><u>/li) (Di)(in)</u><br>1 2<br>1 4<br>1 10<br>25 8 | Width<br><u>(ft)</u><br>-<br>-<br>- | Calculated<br><u>SN</u><br>.88<br>1.76<br>4.00<br>1.40 |
| Calculated Design Structural Number: 8.13                                                                                                                                                                                                                              | 25 8<br>- 32.00                                                              | -                                   | .80<br>8.84                                            |

### **Rigorous ESAL Calculation**

| Performance Period (years):          | 30      |
|--------------------------------------|---------|
| Two-Way Daily Traffic (ADT):         | 185,444 |
| Number of Lanes In Design Direction: | 5       |

Percent of All Trucks In Design Lane (%): 50

Percent Trucks In Design Direction (%): 58

Growth: Compound

|       | Percent | Annual   | Average Initial Truck | Annual % Growth | Accumulated 18K ESALs   |
|-------|---------|----------|-----------------------|-----------------|-------------------------|
| Class | of ADT  | % Growth | Factor (ESALs/truck)  | in Truck Factor | over Performance Period |
| 2     | 88      | 1.71     | .0006                 | .5              | 435,454                 |
| 4     | 8       | 1.71     | .311                  | .5              | 20,519,101              |
| 6     | 4       | 1.71     | 1.364                 | .5              | 44,996,871              |
| Total | 100.00  | -        | -                     | -               | 65,951,425              |





# **Typical Sections**

### **Common NJDOT Standard pavement items**

| PROPOSED MATERIALS |                                               |  |  |  |  |
|--------------------|-----------------------------------------------|--|--|--|--|
| ITEM<br>NO.        | DESCRIPTION                                   |  |  |  |  |
| 202021P            | REMOVAL OF PAVEMENT                           |  |  |  |  |
| 203041P            | GEOTEXTILE, ROADWAY STABILIZATION             |  |  |  |  |
| 301006P            | SUBBASE                                       |  |  |  |  |
| 302042P            | DENSE-GRADED AGGREGATE BASE COURSE, 8" THICK  |  |  |  |  |
| 302045P            | DENSE-GRADED AGGREGATE BASE COURSE, 10" THICK |  |  |  |  |
| 303003M            | ASPHALT-STABILIZED DRAINAGE COURSE            |  |  |  |  |
| 401009P            | HMA MILLING, 3" OR LESS                       |  |  |  |  |
| 401060M            | HOT MIX ASPHALT 12.5 M 76 SURFACE COURSE      |  |  |  |  |
| 401090M            | HOT MIX ASPHALT 19 M 76 INTERMEDIATE COURSE   |  |  |  |  |
| 401099M            | HOT MIX ASPHALT 25 M 64 BASE COURSE           |  |  |  |  |
| 404006M            | STONE MATRIX ASPHALT 12.5 MM SURFACE COURSE   |  |  |  |  |
| 601417P            | UNDERDRAIN, TYPE X                            |  |  |  |  |
| 607018P            | 9" x 16" CONCRETE VERTICAL CURB               |  |  |  |  |

- ASDC, SMA, Underdrains all are utilized to address project specific concerns
  - ✓ Prevent water damage to pavement and underlying soils
  - Extend the life of the riding surface due to high number of ESALs





### **Pavement Construction Concerns**

- Significant amount of construction staging limiting work zones and access for paving equipment
- Maintaining roadway grades and profiles during transitional/temporary pavement periods
- Limited access restricts normal paving operations and requires use of material transfer vehicles or smaller paving equipment
- Existing roadway conditions that were in poor condition required rehabilitated prior to use and shifting of traffic.
- Shoulders used as a temporary lane were investigated and upgraded as needed to ensure the pavement section is adequate to support traffic





# **Material Transfer**

- Adjacent construction operations caused a portion of the edge of the HMA to crack/settle
- Emergency paving with limited access had to performed









# **Project Details - Paving**

### **Pavement Quantities**

| ITEM                           | UNIT | CONTRACT 1 | CONTRACT 2 | CONTRACT 3 |
|--------------------------------|------|------------|------------|------------|
| HMA Milling (various depths)   | SY   | 200,000    | 48,000     | 135,000    |
| HMA Surface Course             | Т    | 28,000     | 28,000     | 26,500     |
| HMA Intermediate Course        | Т    | 50,000     | 45,000     | 22,000     |
| HMA Base Course                | Т    | 70,000     | 85,000     | 35,000     |
| Asphalt Stabilized Base Course | Т    | 5,600      | 15,000     | 300        |
| Dense Graded Aggregrate        | SY   | 150,000    | 180,000    | 80,000     |
| Underdrains (various types)    | LF   | 20,000     | 18,000     | 8,500      |

### **Contract 4**

- In Final Design so quantities still being developed – paving will include entire interchange
- Construction of "Boat Section" for new Ramp C
- Resurfacing with Stone Matrix Asphalt as final riding surface







# Underdrains and Internal Drainage





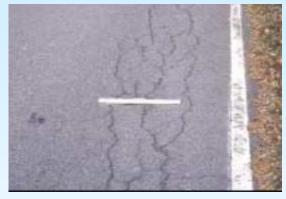
## **Groundwater and Moisture**

- Shallow groundwater conditions and overland drainage required the use of underdrains to prevent water seepage into the subbase and pavement box which can threaten the longevity of the pavement
- Water is one of the most difficult potential damage source to prevent or control
- Water reduces the shear strength of the soil which can result in a weakened subbase and long term damage to the pavement
- Moisture within the pavement can degrade the bonding between layers, as well as erode the other materials within the pavement (PCC or HMA)
- Seasonal fluctuations of groundwater need to be considered to prepare for a worst case scenario





### **Subbase and Subgrade Performance**


- Weak subbase either through poor construction pratices or water damage can manifest itself in a variety of pavement damage
  - Rutting of subgrade and unbound layers
  - ✓ Potholes
  - Surficial cracking (fatigue, longitudinal, transverse)
  - ✓ Stripping of asphalt
  - Essentially any type of pavement failure
  - However, the listed failure types are not limited to a weak subbase/subgrade as the only cause. Numerous load cycles, material quality, construction of the pavement, weather conditions, etc... can all contribute
- Think of the subbase/subgrade as the foundation of the roadway. A weak foundation limits the performance of the supported structure/roadway, regardless of the quality of the materials used





## **Common HMA Distresses**

### All photos were taken from FHWA-HRT-013-092 Distress Identification Manual



Moderate fatigue cracking



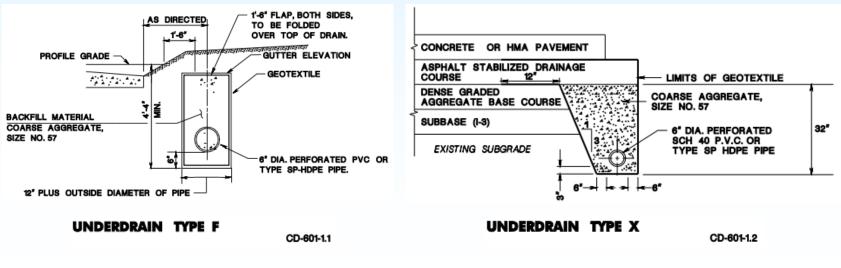
Rutting



### **Deteriorating pothole**



Reflective cracking (HMA overlay on PCC)

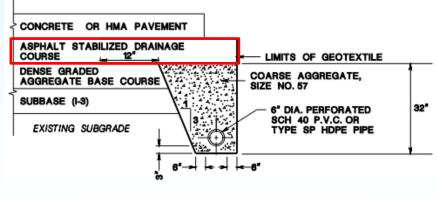





### **Underdrains**

Dewberrv

- Underdrains are proposed in several areas:
  - Low side of roadway in superelevation
  - Both sides of roadway in normal sections where overland drainage is directed toward a roadway
  - Roadway low points within project limits
  - Roadway at or near groundwater levels
  - Standard DOT Detail CD 601-1.1 Underdrain Type F
  - Standard DOT Detail CD 601-1.2 Underdrain Type X
  - □ Type X used in areas where Asphalt-Stabilized Drainage Course is constructed





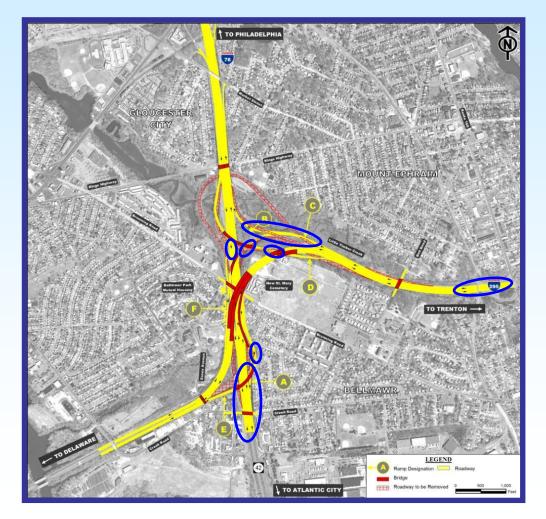

# **Asphalt Stabilized Drainage Course (ASDC)**

- ASDC used in conjunction with underdrains to improve internal drainage to prevent water damage, particularly in areas susceptible to capillary action
  - NJDOT Standard Road and Bridge Specifications Section 302 and 902.06.
    ✓ ASDC does not get tack coat!

| Table 902.06.01-1 Gradation Requirements and Tolerances for ASDC |            |                          |  |  |
|------------------------------------------------------------------|------------|--------------------------|--|--|
| Production Tolerance<br>(Variation From JMF)                     | Sieve Size | JMF<br>(Percent Passing) |  |  |
| -                                                                | 1"         | 100                      |  |  |
| ±1.0                                                             | 3/4"       | 95 - 100                 |  |  |
| ±3.0                                                             | 1/2"       | 85-100                   |  |  |
| ±6.0                                                             | 3/8"       | 60 - 90                  |  |  |
| ±2.0                                                             | No. 4      | 15 - 25                  |  |  |
| ±2.0                                                             | No. 8      | 2-10                     |  |  |
| ±1.0                                                             | No. 200    | 2-5                      |  |  |



UNDERDRAIN TYPE X


CD-601-1.2





## **Underdrain Locations**

### > Approximate areas where underdrains required









# **Stone Matrix Asphalt**





# **Development and History**

- Originated in Europe, came to US in early 1990s. First project on I-94 near Waukesha, Wisconsin in 1991
- NJ used SMA on limited projects prior to 2008. Since 2008 SMA has been used more frequently with very good results
- Provides high rut resistance through aggregate shape and size, as well as a rich asphalt binder and additives
- Increasingly popular with state agencies but is more expensive. Higher cost offset by increased life expectancy of pavement





## **National and State Specifications**

- > AASHTO R46 / AASHTO M325.
- NJDOT Asphalts Section 404 and Materials Section 902.05
- Most standard requirements for HMA also apply to SMA
- However, SMA does have some restrictions
  - $\checkmark\,$  No paving operations under 50°F. HMA is restricted to 32°F
  - Due to rich binder mix excessive vibratory compacting should be avoided to prevent bleeding
  - Rollers should be kept close to the paver. A second roller in static mode can be used if the pavers are not close to the paving machine
  - Paving operations can also be slowed down to maintain a close distance between roller and paver





# **NJDOT HMA Specification**

| Table 902.02.03-1 HMA Mixtures Nominal Maximum Size of Aggregate – Grading of Total Aggregate |                                                                  |      |       |      |       |      |         |      |        |      |         |      |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|-------|------|-------|------|---------|------|--------|------|---------|------|
|                                                                                               | Nominal Maximum Aggregate Size - Control Point (Percent Passing) |      |       |      |       |      |         |      |        |      |         |      |
| Sieve Size                                                                                    | 37.5 mm                                                          |      | 25 mm |      | 19 mm |      | 12.5 mm |      | 9.5 mm |      | 4.75 mm |      |
|                                                                                               | Min.                                                             | Max. | Min.  | Max. | Min.  | Max. | Min.    | Max. | Min.   | Max. | Min.    | Max. |
| 2"                                                                                            | 100                                                              | -    | -     | -    | -     | -    | -       | -    | -      | -    | -       | -    |
| 1 1/2"                                                                                        | 90                                                               | 100  | 100   | -    | -     | -    | -       | -    | -      | -    | -       | -    |
| 1"                                                                                            | -                                                                | 90   | 90    | 100  | 100   | -    | -       | -    | -      | -    | -       | -    |
| 3/4"                                                                                          | -                                                                | -    | -     | 90   | 90    | 100  | 100     | -    | -      | -    | -       | -    |
| 1/2"                                                                                          | -                                                                | -    | -     | -    | -     | 90   | 90      | 100  | 100    | -    | 100     | -    |
| 3/8"                                                                                          | -                                                                | -    | -     | -    | -     | -    | -       | 90   | 90     | 100  | 95      | 100  |
| No. 4                                                                                         | -                                                                | -    | -     | -    | -     | -    | -       | -    | -      | 90   | 90      | 100  |
| No. 8                                                                                         | 15                                                               | 41   | 19    | 45   | 23    | 49   | 28      | 58   | 32     | 67   | -       | -    |
| No. 16                                                                                        | -                                                                | -    | -     | -    | -     | -    | -       | -    | -      | -    | 30      | 60   |
| No. 200                                                                                       | 0                                                                | б    | 1     | 7    | 2     | 8    | 2       | 10   | 2      | 10   | 6       | 12   |

| Table 902.02.03-3 HMA Requirements for Design |                         |                                                  |                                 |      |      |      |      |                                                      |                         |           |  |
|-----------------------------------------------|-------------------------|--------------------------------------------------|---------------------------------|------|------|------|------|------------------------------------------------------|-------------------------|-----------|--|
| Compaction                                    | Required<br>(% of Theor | Voids in Mineral Aggregate (VMA),<br>% (minimum) |                                 |      |      |      |      | Voids Filled<br>With Asphalt<br>(VFA) <sup>1</sup> % | Dust-to-Binder<br>Ratio |           |  |
| Levels                                        | Specific Gravity)       |                                                  | Nominal Max. Aggregate Size, mm |      |      |      |      |                                                      |                         |           |  |
|                                               | $@N_{des}^2$            | @N <sub>max</sub>                                | 37.5                            | 25.0 | 19.0 | 12.5 | 9.5  | 4.75                                                 | ((11)) //               |           |  |
| L                                             | 96.0                    | ≤98.0                                            | 11.0                            | 12.0 | 13.0 | 14.0 | 15.0 | 16.0                                                 | 70 – 80                 | 0.6 - 1.2 |  |
| М                                             | 96.0                    | ≤98.0                                            | 11.0                            | 12.0 | 13.0 | 14.0 | 15.0 | 16.0                                                 | 65 – 78                 | 0.6 – 1.2 |  |

1. For 37.5 mm nominal maximum size mixtures, the specified lower limit of the VFA is 64 percent for all design traffic levels.

 As determined from the values for the maximum specific gravity of the mix and the bulk specific gravity of the compacted mixture. Maximum specific gravity of the mix is determined according to AASHTO T 209. Bulk specific gravity of the compacted mixture is determined according to AASHTO T 166. For verification, specimens must be between 95.0 and 97.0 percent of maximum specific gravity at N<sub>des</sub>.

For mix designs that include RAP or GBSM, also include the following based on the weight of the total mixture:

- 1. Percentage of RAP or GBSM.
- 2. Percentage of asphalt binder in the RAP or GBSM.
- 3. Percentage of new asphalt binder.
- 4. Total percentage of asphalt binder.
- 5. Percentage of each type of virgin aggregate.





# **NJDOT SMA Specification**

| Table 902.05.02-1 SMA Specification Band (% Passing) Nominal-Maximum Aggregate Size |                              |                                    |                                    |                                    |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------|------------------------------------|------------------------------------|------------------------------------|--|--|--|
| Production<br>Control Tolerances from<br>JMF <sup>1</sup>                           | Sieve Size                   | 19 mm<br>% Passing                 | 12.5 mm<br>% Passing               | 9.5 mm<br>% Passing                |  |  |  |
| 0%                                                                                  | 1"                           | 100                                | 100                                | 100                                |  |  |  |
| ±2%                                                                                 | 3/4"                         | 90 - 100                           | 100                                | 100                                |  |  |  |
| ±5%                                                                                 | 1/2"                         | 50 - 88                            | 90 – 100                           | 100                                |  |  |  |
| ±5%                                                                                 | 3/8"                         | 25 - 60                            | 50 – 80                            | 70 – 95                            |  |  |  |
| ±3%                                                                                 | No. 4                        | 20 - 28                            | 20 – 35                            | 30 – 50                            |  |  |  |
| ±2%                                                                                 | No. 8                        | 16 - 24                            | 16 – 24                            | 20 - 30                            |  |  |  |
| ±4%                                                                                 | No. 16                       | -                                  | -                                  | 0-21                               |  |  |  |
| ±3%                                                                                 | No. 30                       | -                                  | -                                  | 0-18                               |  |  |  |
| ±3%                                                                                 | No. 50                       | -                                  | -                                  | 0 - 15                             |  |  |  |
| ±2%                                                                                 | No. 200                      | 8.0 - 11.0                         | 8.0 - 11.0                         | 8.0 - 12.0                         |  |  |  |
| -                                                                                   | Coarse Aggregate<br>Fraction | Portion Retained<br>on No. 4 Sieve | Portion retained<br>on No. 4 Sieve | Portion retained<br>on No. 8 Sieve |  |  |  |
| -                                                                                   | Minimum Lift Thickness       | 2 inches                           | 1 1/2 inch                         | 1 inch                             |  |  |  |

1. Production tolerances may fall outside of the wide band gradation limits.

| Table 902.05.02-2 SMA Mixtures Volumetrics for Design and Plant Production                             |                                  |               |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------|---------------|--|--|--|--|
| Property                                                                                               | Production<br>Control Tolerances | Requirement   |  |  |  |  |
| Air Voids                                                                                              | ±1%                              | 3.5%          |  |  |  |  |
| Voids in Mineral Aggregate (VMA)                                                                       | -                                | 17.0% minimum |  |  |  |  |
| VCAmix                                                                                                 | Less than VCAdry                 |               |  |  |  |  |
| Draindown @ production temperature                                                                     | -                                | 0.30% maximum |  |  |  |  |
| Asphalt Binder Content (AASHTO T 308)1                                                                 | 6% minimum                       |               |  |  |  |  |
| Tensile Strength Ratio (AASHTO T 283)                                                                  | 80% minimum                      |               |  |  |  |  |
| 1. Asphalt binder content may not be lower than the minimum after the production tolerance is applied. |                                  |               |  |  |  |  |





# **SMA Specifications**

- SMA <u>cannot</u> include the following materials per NJDOT specification but does not necessarily mean other state agencies do not permit the use of these materials in some form of reduced percentage in comparison to HMA
  - Reclaimed Asphalt Pavement (RAP)
  - Crushed Recycled Container Glass (CRCG)
  - Ground Bituminous Shingle Material (GBSM)
  - Remediated Petroleum Contaminated Soil Aggregate (RPCSA)
- Higher percentage of Voids in Mineral Aggregate (VMA) for SMA resulting in a more effective asphalt content
  - $\checkmark$  VMA = V<sub>effective asphalt</sub> + V<sub>air</sub>

### HMA Sieve size vs SMA sieve

Due to aggregate requirements for SMA the 3/8", #4, and #8 have much lower % passing than standard HMA





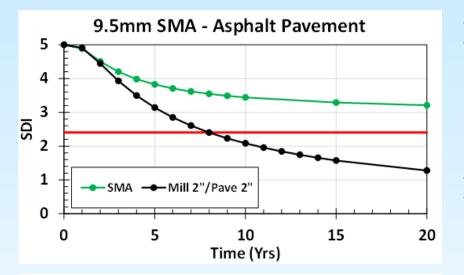
## **SMA Performance**

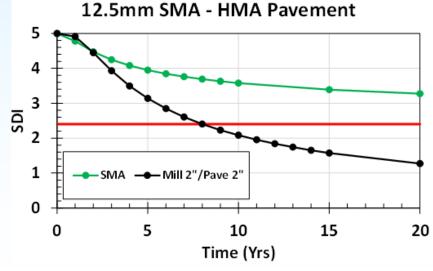
- SMA provides significant long term improvement over HMA relying on stone to stone contact and efficient asphalt binder contact
- DOT Project Managers and Resident Engineers have had positive experiences on numerous projects and expect the use of SMA to increase on state projects.
- In 2019 approximately 130,000 Tons of SMA was used on state projects according to NJDOT Pavement Group





## **SMA Performance Study in New Jersey**


- Study by Dr. Thomas Bennert, Ph.D. from Rutgers University and the Center for Advanced Infrastructure and Transportation (CAIT)
- NJDOT Pavement Management System (PMS) data extracted from 2007 to 2019 and includes approximately 100 SMA pavement sections using the following criteria
  - ✓ Minimum of 3 years of performance
  - ✓ 9.5 mm and 12.5 mm nominal aggregate sizes
  - Flexible and composite overlays
  - ✓ Performance compared to mill 2 "/pave 2" HMA

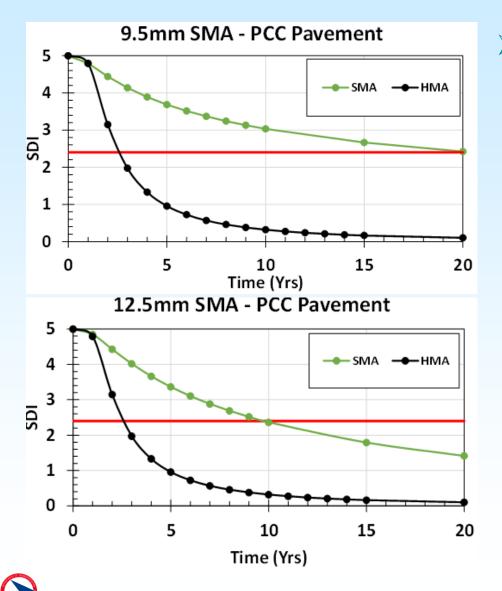

Surface Distress Index (SDI) used to evaluate pavement life.
 SDI < 2.4 trigger for pavement rehabilitation</li>





# **SMA Field Performance - Flexible**






- Pavement distress curve shows SMA should outperform HMA by 10+ yrs
- I-295/42/76 will have a SMA overlay during the final Contract 4 phase

Dewberry



## **SMA Field Performance - Composite**



Pavement distress curve shows SMA should outperform HMA by 7+ yrs



# **SMA Financial Impact**

- SMA bid prices tend to be approximately 30-40% higher per ton compared to typical HMA Surface Courses but can vary from contract to contract
- Increased life span of SMA reduces the maintenance frequency and cost of paving operations on major highways
  - Preparation of Contract documents
  - Additional stress on roadway travelers during construction. Particularly when a major interchange is involved
  - Time wasted on repetitive maintenance work when the time/resources could be spent on other projects







# **Project Team**

Dewberrv

- > A.D. Marble
- Advanced Infrastructure Design
- Advantage Engineering
- > A-Tech Engineers
- The Bio Engineering Group
- Dresdner Robin
- GEOD, Corp.
- Howard Stein Hudson

- Infra MAP
- Malick & Scherer
- WSP (Formerly Parsons Brinckerhoff)
- Paul Carpenter Associates
- Stokes Creative Group
- SJH Engineering
- Urbitran/AECOM
- YU Associates



# **Questions?**





