

Outline

- Distress Identification and Causes
- Thickness Design
- Mix Type and Lift Thickness
- Binder Selection
- Effect of Recycled Binders
- Mix Design
- Prep for Paving
- Minimizing Segregation
- Laydown Operations
- Importance of Density
- Pavement Preservation

phalt institute

asphalt institute

Dealing with Pavement Distress

- Distress Identification is Critical
- Design to Eliminate Distress
- Rehabilitation depends on both the Type and Severity of Distress
- Proper Routine Maintenance Minimizes Future Problems and Reduces Costs

Distress Categories (Causes)

- Load Related
- Environmental
- Other Design / Construction Related
 - Poor Drainage
 - Material Deficiencies
 - Construction-related Deficiencies
 - Insufficient Design

<section-header><section-header>

Perpetual Pavement Design Software

PerRoad and PerRoadXpress use the mechanistic-empirical design philosophy. The program couples layered elastic analysis with a statistical analysis procedure (Monte Carlo simulation) to estimate stresses and strains within a pavement. In order to predict the strains which would prove detrimental for fatigue cracking or structural rutting.

www.asphaltroads.org/perpetual-pavement

16

Aggregate Size Definitions

asphalt institute

Nominal Maximum Aggregate Size

 One size larger than the first sieve to retain (cumulative) more than 10%

Maximum Aggregate Size

One size larger than nominal maximum size

Both definitions are based on the standard ASTM sieve nest

Sieve, mm (US)	Retained, %	Cumulative Retained, %	Passing, %
37.5 (1.5")	0	0	100
25.0 (1.0")	0	0	100
19.0 (3/4")	0	0	100
12.5 (1/2")	0	0	100
9.5 (3/8")	5	5	95
4.75 (#4)	22	27	73
2.36 (#8)	21	48	52
1.18 (#16)	13	61	39
.600 (#30)	12	73	27
.300 (#50)	11	84	16
.150 (#100)	4	88	12
0.075 (#200)	7	95	5.0
Pan	5.0	100	

²³

Superpa	Superpave Size Designations					
Superpave Designation	Nom Max Size, mm	Max Size, mm				
 37.5 mm	37.5	50.0				
25.0 mm	25.0	37.5				
19.0 mm	19.0	25.0				
12.5 mm	12.5	19.0				
9.5 mm	9.5	12.5				
6						

Compacted Lift Thickness

NMAS grading is different than older "Topsize" Grading

Old Rule of Thumb - Minimum lift thickness = 2x Topsize

NMAS - Minimum compacted thickness

✓4 times nominal aggregate size

 \checkmark 3 times nominal aggregate size for fine graded mixtures

- Thicker lifts are easier to compact
- Cool slower, providing longer compaction time

Minimum -----NOT MAXIMUM !

asphalt institute

NCHRP 9-12 Recom	mendation	Sasphalt institute
RAP mixtures should be a at least as well as vir	able to perfor gin mixes.	m
ACTION	RAP	
No Change in Binder Grade	15% or less	
One Grade Lower	16 - 25%	
Use Blending Charts	>25%	
Adopted in AASHTO Superpave Volumetric Mi>	M323 Design	

	E>	kamp	le De	sign	Speci	ficati	on	asphal	It insti
Effective		Minimum Design VBE, vol %							
RAP Binder Batio	58-28 S	58-28 H	58-28 V	58-28 F	58-34 s	58-34 H	58-34 V	58-34 F	
0.00	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
>0.00 ≤0.05	10.4	10.2	10.0	10.0	10.0	10.0	10.0	10.0	
>0.05 ≤0.10	10.7	10.5	10.1	10.0	10.0	10.0	10.0	10.0	
>0.10 ≤0.15	11.1	10.9	10.4	10.0	10.0	10.0	10.0	10.0	
>0.15 ≤0.20	11.5	11.3	10.8	10.2	10.1	10.0	10.0	10.0	
>0.20 ≤0.25	11.9	11.7	11.2	10.6	10.4	10.2	10.0	10.0	
>0.25 ≤0.30	12.2	12.0	11.5	11.0	10.8	10.6	10.1	10.0	
>0.30 ≤0.35					11.2	11.0	10.5	10.0	
>0.35 ≤0.40		moratu	ro Crada (Controls	11.5	11.3	10.9	10.3	
>0.40 ≤0.45		emperatu	re Grade (CONTROLS	11.9	11.7	11.2	10.6	
>0.45 ≤0.50					12.3	12.1	11.6	11.0	

Com	mon Tack	Coat Ques	tions		
 What is the Optimal Application Rate? Surface Type Surface Condition Workshop Recommended Ranges 					
Surface Type	Residual Rate (gsy)	Appx. Bar Rate Undiluted [*] (gsy)	Appx. Bar Rate Diluted 1:1 [*] (gsy)		
New Asphalt	0.020 - 0.045	0.030 - 0.065	0.060 - 0.130		
Existing Asphalt	0.040 - 0.070	0.060 - 0.105	0.120 - 0.210		
Milled Surface	0.040 - 0.080	0.060 - 0.120	0.120 - 0.240		
Portland Cement Concrete	0.030 - 0.050	0.045 - 0.075	0.090 - 0.150		
		*Assume emulsion is 33% v	vater and 67% asphalt.		

