Asphalt Rubber Usage

57th Annual New Jersey Asphalt Paving Conference

Rod Birdsall, PE Consultant All States Materials Group March 25, 2014

Materials Group®

Outline of Presentation

- Pavement Preservation
- AR Binder
- AR Binder Quality Control
- AR Mix Types and Applications
- AR Mixture Quality Control
- AR Mix Performance Data
- SAM/SAMI Applications
- Summary

Pavement Issues in the Northeast

- Cracking
 - Reflective
 - Thermal
 - Fatigue
- Short Paving Season
- Night Work/ Limited Hours

Goals:

Find the best Long Term, Economical Solution

Performance Specifications not Recipes

All States Asphalt Experience with Asphalt Rubber

- 1995
 - Purchased Blending Equipment
 - Purchased Spraying Equipment to do AR SAM and SAMI
- 1997
 - First AR supplied for AR Mixes
- 2007
 - Purchased First Portable Blending Equipment
- 2013
 - Added Rubber Blending Capabilities to Terminal

ASTM D-6114, Type II Requirements

- % Crumb Rubber
- Apparent Viscosity cP @ 175 C
- Penetration @ 25 C, 100g, 5 sec
- Penetration @ 4 C, 200g, 60 sec
- Softening Point, C
- Resilience, 25C, %
- Flash Point, C Minimum
- Penetration Retention, 4 C; % Original

15 Minimum 1500- 5000 25-75 15 Minimum 54.4 Minimum 20 232.2

75 Minimum

AR Binder: ASTM D6114, Type II (Wet Process)

• 15-20% Crumb Rubber

- Typically 30-40 Mesh
- Processed from Scrap Tires
- Performance Graded Asphalt
 - PG58-28 (or) PG 64-22
 - Blend of the two to meet spec requirements
- On Site blending or at a facility or terminal
- Reaction process
 - Elevate Temperature
 - Mix for 1 hour
 - Rubber particles swell, Suspension in Asphalt
- Warm Mix Additive
- QC Plan

Rubberized AC Products

Asphalt-Rubber Binder

Terminal Blend Binder

Asphalt Binder Comparisons

Criteria	AR	ТВ	PG
% Crumb Rubber	15+	3-15 Typically: 5-10	N/A
Specification	ASTM D-6114	Local	AASHTO M320
cP@375 F	1500-5000	500-	100-
Softening Pt. F	140+	125+	115- Typical
ALF Cycles	300,000+	100,000	100,000

Why Asphalt Rubber?

Rubber contains polymers which...

- Raises softening point of binder to above 140° F.
 - Resistance to rutting and shoving
 - Resistance to asphalt migration and drain-down
- Increases low temperature flexibility of residue.
 - Resistance to thermal and fatigue cracking (Major issues and selection concerns in the Northeast)

Why Asphalt Rubber?

- Increases high temperature viscosity.
 - Thicker film coatings on aggregate particles
 - Higher asphalt content mixes / applications
 - More asphalt = greater resistance to oxidation
 - Increased long term durability
 - Top PG Grading above 80
- Beneficially Utilizes Tires

Two ALF's with 12 Pavement Lanes Constructed in the Summer and Fall of 2002

Percentage of Area Cracked vs. ALF Wheel Load Passes

Asphalt Rubber Binder – Blending

Asphalt Rubber Binder – Blending

Blender Batch Report

		Material Usage			Rubber Accuracy			Polymer Accuracy				
itch #	<u>Start Time</u>	<u>End Time</u>	<u>Rub/Tons</u>	<u>Poly/Tons</u>	<u>Oil/Tons</u>	<u>Size/Tons</u>	Request %	Actual %	Accuracy %	Request %	Actual %	Accuracy %
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN (NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN. NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN : NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN : NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN : NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN : NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN
INN	NN: NN	NN: NN	NNNN.NN	NNNN.NN	NNNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN	NN.NN	NNN.NN	NNN.NN

Asphalt Rubber Binder – Reaction

All States Materials Group[®]

Print

Interlock System Sampling Report

Time	<u>Rock/Tph</u>	Oil/Tph	Rock Total	Oil Total	Oil Temp	Oil Visc	Mix %	Oil Error %	Accuracy %
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN.NN	NNNN.NN	NNN.N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN
NN:NN	NNN.NN	NNN.NN	NNNN NN	NNNN.NN	NNN N	NNNNN	NNNN.NN	NNN.NNN	NNNN.NN

Deerfield, MA Asphalt Terminal

AR Binder QC Plan Requirements

- Certify grade of PG asphalt used
- Verify crumb rubber source and gradation
- Establish proper blend ratios to meet AR binder specification
- Establish minimum reaction time of blend
- Establish automation requirements for field blending
- Establish protocol for field control of AR binder properties
- Establish frequency of required tests for both the field and samples sent to lab for specification compliance
- Require a one quart sample be retained for each lot or batch produced
- Establish minimum requirements for proportioning and blending recordation and printouts
- Establish protocol for non-compliance of AR Binder

Why AR in Mixes & Pavement Preservation

- Higher binder contents (Thicker Films) lead to longer treatment life
- Better Fatigue Resistance to Reflective and Thermal Cracking
- Reduced Rutting potential
- Longer Service Life of Treatment
 - Keep Crews off the Road
 - Less Driver Inconvenience due to Construction Delays
- Better Long term Durability
- Lower Equivalent Annual Costs
- **Reduced Noise levels** especially with AR OGFC
 - Green" Process Reuses Scrap Tires
 - Reduced Emissions with WMA additive

AR-OGFC Asphalt Rubber Mixes

AR-OGFC Mix Design

- 100% P ½" Sieve, 90+% P 3/8" (9.5 mm)
- 8% Minimum Binder content
- No RAP or RAS
- 50 Gyrations
- 15% Minimum Air Voids
- Verify Stone on Stone Contact
- 30% Maximum Cantabro loss
- 0.3% Maximum Drain down
- Require WMA chemical/wax additive

FHWA 0.45 Power Chart - 12.5mm Maximum Aggregate Size Mix: AR - OGFC

Sieve Size (Raised to the 0.45 Power)

AR-OGFC Gradation Band

Percent Passing

I-78 NJ – AR OGFC

NJDOT I-78 – Pavement History

- MP 30.9 to 42.7 (I-287 East)
- Consists of mostly 3 travel lanes 12 feet wide plus shoulders
- Initial construction of Bituminous Concrete in 1965
- Last Rehab in 1999
 - Mill 4 inches
 - Pave 4 inches, 2 lifts of Superpave w/ PG76-22
- 77,270 AADT with 30% trucks, 28% heavy trucks (each way)
- SDI prior to AR OGFC = 2.5 (0=failed, 5 = new pavement)
- Average IRI before paving = 70 inches/mile average
- 9.5mm AR OGFC, placed 1 1/4 inch compacted
 - Pavement Preservation Treatment
 - 8.5% Design Binder content using ASTM D-6114 AR

I-78 – Surface Preparations

Longitudinal Joint - Microsurfacing

I-78 Mix Production – AR OGFC

Stavola 6-ton Batch Plant – Bound Brook, NJ

I-78 – AR OGFC Placement

I-78 NJ – AR OGFC (June, 2013)

Garden State Parkway

ARGG Mixes

ARGG Mix Design Criteria

- 12.5 mm mix
- Minimum 7.5 Binder content
- 0-10% RAP
- 0-5% RAS (new tabs only)
- 75 Gyrations
- 18-23% VMA
- 3-6% Air Voids
- 0.3% Drain down, max.
- Wax/Chemical Warm Mix additive
 - MassDOT- 280 F max if pavement temperature is 64+ F
 - 290 325 F if temperature is 40 64 F

ARGG Gradation Band

FHWA 0.45 Power Chart - 19.0mm Maximum Aggregate Size Mix: ARGG with SonneWarmix

Sieve Size (Raised to the 0.45 Power)

Percent Passing

MassDOT- ARGG, I-295, August 2008

EXIT 2B

NORTH 65

Boston

EXIT 2A

SOUTH

Providence R

MassDOT- ARGG, I-295, September 2013

I-95 Attleboro "Before"

- I-95 Attleboro (2008)
- 4.57<u>+</u> miles (37.56 lane miles)
- 3 lanes + Breakdown lane & Shoulder
- Distress
 - Ravelling & Weathering OGFC
 - Delamination & Thermoplastic
 - Longitudinal Joints & Plow Damage
- Rehab
 - Micromill & 1.25" ARGG Thin Overlay
- Bid \$3,022,045.35
 - Clearing & Grubbing
 - Frames/Grates (lockdowns)
 - Guardrail repairs & Safety items
 - Traffic Control, Striping, etc.
- Cost \$82.6K/lane mile

Pre-Construction Ride Statistics								
ROUTE	FROM	ТО	LIRI	RIRI	AVG IRI	COMMENTS	COLLECTION YEAR	PROJECT #
0095N	0.00	4.57	74.65	85.84	80.25	No Bridge	2008	54309

I-95 Attleboro

Ride Statistics

ROUTE	FROM	ТО	LIRI	RIRI	AVG IRI	COMMENTS	COLLECTION YEAR	PROJECT #
0095N	0.00	4.57	74.65	85.84	80.25	Before	2008	54309
0095N	0.00	4.57	40.57	56.07	48.32	After	2009	54309

I-95 Attleboro "After"

Ride Quality Improvement								
ROUTE	FROM	ТО	LIRI	% REDUCED	RIRI	% REDUCED	AVG IRI	% REDUCED
0095N	0.00	4.57	34.09	45.7%	29.77	34.7%	31.93	39.8%

PennDOT I-78 – September, 2012 Pre-Existing

Project Scope

- Mill off existing bituminous pavement (3.0 3.5")
 - Identify spall repairs (PCC) & mark out
 - FWD at all PCC spall repair locations
 - Identify full depth PCC repairs & mark out
 - 1.5" milling of bituminous shoulders outside
- Tack Coat & Leveling Course
 - 12.5mm AR GGFC w/ WMA (variable 1.5 2.0")
 - 2 12 foot lanes
 - 9.5mm Superpave PG76-22 WMA control
 - SRL-L Aggregate for leveling
 - Full depth PCC repairs to elevation of leveling
- Final Wearing Course to elevation of median
 - 12.5mm AR GGFC w/ WMA (1.5" depth)
 - 9.5mm Superpave PG76-22 WMA Control

Notch Wedge Joint

Concrete Repairs after Leveling

PennDOT I-78 Control- September, 2013

PennDOT I-78 September, 2013

WWW.ASMG.COM

ARGG

AR Bonded Wearing Course

Bonded Wearing Course (BWC) - Definition

BWC is a polymer emulsion (applied at 0.20 gallons per square yard) sprayed immediately before placement of the hot mix overlay (3/4"). Followed by rolling.

- Efficient/fast operation
- Used on roads with sound foundation
- Good ride and aesthetically pleasing

Spray Paver AR BWC Application

Placing and Compacting AR Bonded Wearing Course

MassDOT- AR BWC, I-295, June, 2013 (2008)

AR Mix Performance Criteria

- Warm Mix
- Overlay Tester
- Hamburg or APA
- In Place Air Voids
- IRI
- Crack Mapping
- Monitor Noise

Why Use WMA?

- Environmentally Sound
- Reduces green house gas emissions
- Reduces energy use
- Reduces opacity and odor
- Improves workability
- Reduces binder aging
- Reduces paving temperatures
- Offers the potential to increase the % of RAP used in mix
- Offers the potential to extend the paving season

Amherst, MA- ARGG

Amherst, MA – ARGG

I-78 (Somerset County, NJ) – AR OGFC with WMA

ſ

Emissions Testing

- Looked at quantifying emission reduction at paver with and without WMA
- Used portable emissions tester mounted to railing on back of paver (where workers would stand)

I-78 AR OGFC – Typical Emissions at Paver

Overlay Tester

- Sample size: 6" long by 3" wide by 1.5" high
- Loading: Continuously triangular displacement 5 sec loading and 5 sec unloading
- Definition of failure
 - Discontinuity in Load vs
 Displacement curve

Typical Preservation Overlay Mixes

All States Materials Group® NHDOT

Overlay Tester Cracking Results NJ 178, 2009

Maine DOT I-295 Hamburg Results

Typical Mix After Less Than 6,000 Passes

I-295 ARGG Mix After 20,000 Passes

	12.5mm Warner Bros Contr	ARGG					
Mix NMAS	12.5mm	12.5mm					
Design ESALs	0.3 to <3 Million	3-10 Million					
Design Gyrations	75	100					
Stockpile Percentages							
12.5mm	35%	18%					
9.5mm	10%	57%					
Manufactured Sand	-	15%					
Stone Dust	20%	-					
Natural Sand	20%	-					
RAP	15%	10%					
Gradation							
19.0 mm	100	100					
12.5 mm	95	99					
9.5 mm	74	85					
No. 4	50	38					
No. 8	39	20					
No. 16	26	14					
No. 30	17	10					
No. 50	11	8					
No. 100	7	6					
No. 200	4	4					
Combined Aggregate Specific Gravity, Gsb	2.748	2.803					
Binder							
Binder Content, %	5.20%	8.0%					
Binder Type	PG64-28	PG58-28 with CRM					
Compaction Temperature	285°F	300°F					
Design Volumetric Properties							
Air Voids, %	3.6%	4%					
VMA, %	15.0	21.0					
VFA, %	74.6	83.0					
Maximum Theoretical Specific Gravity, Gmm	2.583	2.485					
HSRC Lab Verification of Volumetric Properties							
Air Voids, %	3.9%	2.7%					
VMA, %	14.8	19.9					
VFA, %	73.6	86.6					
Maximum Theoretical Specific Gravity, Gmm	0.9	2.508					

MassDOT Control vs ARGG Gradations

AASHTO T321 Beam Fatigue Nf to 50% Reduction in Initial Stiffness

All States Materials Group®

Flow Number - AASHTO TP79 - 50°C 600 kPa Deviator Stress MassDOT Control vs ARGG

All States Materials Group®

WWW.ASMG.COM

Highway Sustainability Research Cente

Overlay Test Results - Tex-248-F - 15°C MassDOT Control vs. ARGG

TSRST Results - AASHTO TP10 MassDOT Control vs ARGG

AR Mixture QC Plan Requirements

- Verify Compliance of AR Binder for Specification Properties
- Verify Aggregate physical and gradation requirements
- Establish appropriate mix design criteria for mixture
 - Min % binder, VMA, gradation limits, voids in mix, WMA additive, mix and placement temperatures
- Establish required production sampling and testing criteria and frequency at plant
- Establish required sampling of field placed mix, density or coring requirements and frequency
- Determine additional required performance testing
 - Overlay tester, flexural beam, Hamburg, APA
- Establish protocol if there are compliance issues

SAM/SAMI Applications

PICINE

Asphalt Rubber Chip Seal — Sprayer

Asphalt Rubber Chip Seal — Chip Spreader

Asphalt Rubber Chip Seal — Rolling

Asphalt Rubber Chip Seal

Stress Absorbing Membrane - SAMI

Crumb Rubber SAMI – with HMA overlay

Cheshire Lanesboro HMA over Rubber Chip Seal SAMI

- Route 8 Cheshire
 Lanesboro
- HMA over Rubber Chip Seal SAMI
- Crack stops at SAMI.
- Effective on most longitudinal cracking.
- Effective on less severe transverse cracking.

Summary – Asphalt Rubber Applications

- AR Binder and Terminal Blend have completely different properties
- AR Binder enhances the performance of mixes by stiffening the binder, increasing elasticity (crack resistance), and resistance to migration
- AR mixes are easily designed using current test methods and proper specifications. Typically AR mixes have 20% higher binder contents than conventional mixes

Summary – continued

- AR OGFC, ARGG & ARBWC mixes have been used successfully in many states and climates with great success
- AR mixes reduce rutting, oxidation, cracking and pavement noise and provide smooth surfaces
- Utilizing best practices, AR mixes are user friendly
- QC Plans for the AR Binder and AR Mixes are an essential component of any successful project

Summary – continued

- AR mixes can easily be adapted to warm mix applications reducing mix temperatures, emissions and binder aging
- There is on going data collection and research to determine the long term performance of AR mixes
- AR mixes consume old tires and are environmentally friendly

Questions

THANK YOU

Products & Services

- EC BIT WMA Binder
- CRMB for HMA
- PG Graded Binders
- Asphalt Rubber SAM & SAMI
- FiberMat[®] SAM & SAMI
- Bonded Pavements
- Chip Seals
- Liquid Calcium/Magnesium Chloride
- Full Depth Reclamation
- Hot & Cold Mix Asphalt

Rod Birdsall, PE

Consultant (413) 687-2208 rbirdsall@asmg.com

Mark Edsall Technical Marketing (315) 396-1883 medsall@asmg.com

Website: www.ASMG.COM

