

Two Puzzle Pieces Today

Plant Operations Lab Testing

Pant

operations

Mix Design Assumptions

Plant can duplicate lab design If plant gradation & asphalt content match JMF, mix properties will be same as lab design

Mix Design Assumptions

Unfortunately,

These assumptions are 107 normally true!!!

Don't assume lab mix properties can be duplicated in HMA plant.

Mix verification through plant critical.

Plant Inspection Issues

Verify Calibration of bin feed and asphalt weigh system
Verify temperatures constantly
Ensure uniformity of mix

Compare gradations - Extracted - Combined aggregates - Individual aggregate

Extracted Gradation Sample from -Truck -Windrow -Roadway Check against design targets Additional sampling if unmatched

Combined Aggregate Gradation
Aggregate conveyor
Automatic sampler

Verify against belt cuts

Hot stop belt cut

- Individual Aggregate Gradation
 Sample leaving cold feed bins
 Container under feeder
 Hot stopped
 Loader buckets extracted from feeding face of stockpile
 - -"Mini" stockpile

Drum Mix – Plus P200

Gradation	OK?	Investigate
Extracted		•Gradation change of
Combined		individual materialStockpile segregation
Individual		

Drum Mix – Plus P200

Gradation	OK?	Investigate
Extracted		•Feed bin out of
Combined		calibrationPlugged feed binWrong mix design
Individual		wrong mix design

Drum Mix – Plus P200

Gradation	OK?	Investigate
Extracted		•Mix Segregation
Combined		
Individual		

Drum Mix – Minus P200

Gradation	OK?	Investigate
Extracted		•Gradation change of
Combined		individual materialStockpile segregation
Individual		

Drum Mix - MinusP200

Gradation	OK?	Investigate
Extracted		•Feed bin out of
Combined		calibrationPlugged feed binWrong mix design
Individual		wrong mix design

Drum Mix – Minus P200

Gradation	OK?	Investigate
Extracted		•Production rate changes w/100% BHF
Combined		 Draft with partial BHF Uncalibrated BHF return if partial
Individual		 Inclined dust screw w/start & stop Mix segregation

And the second second second

Troubleshooting Asphalt Content Problems

Drum Batch

Inconsistent Binder Content Error

Segregation of mix
Asphalt flow control
Belt scales
Asphalt meter

Troubleshooting Asphalt Content Problems

- Drum
- Automation determines asphalt flow
 Belt scales must be calibrated
 Asphalt meter must be calibrated

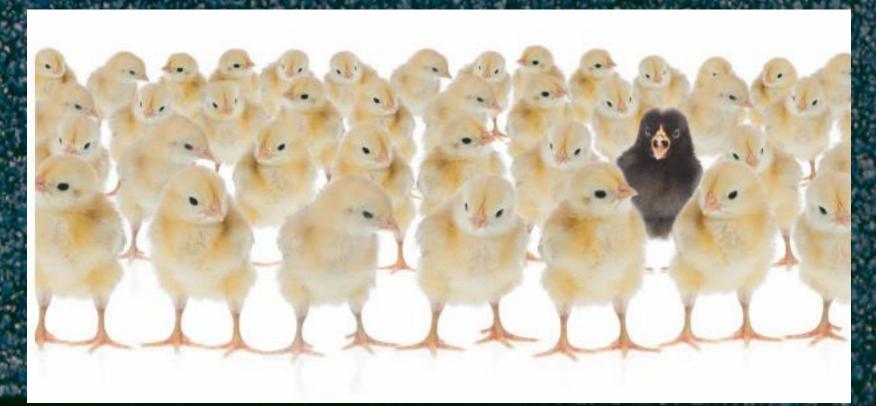
 Calibrations should be done over different speed ranges

Factors Affecting Asphalt Content Accuracy Continued Climatic conditions -Extreme temperature swings -Will scale maintain "zero" Aggregate Moistures Ignition oven effect of moisture

Factors Affecting Asphalt Content Accuracy Continued

- Asphalts of different suppliers may have different meter calibration factors
- Account for binder in RAP/RAS
- Segregation of mix at plant
- BHF effect on binder/gradation/asphalt content in mix

Consistent Binder Content Error


Possible calibration error
Improper data input

Meter calibration factor
Specific gravity of binder
Asphalt content of RAP/RAS

Lab Testing

Variability
Test Procedures
Inspection Issues

Statistics as a Tool

Test Method Variability

• Is test method precise? Which of several methods is most precise? • What is quality of lab work? Has material become contaminated? What are appropriate manufacturing targets?

Variability Example

 Average adult male in U.S. is 5'9"
 Info not very helpful to determine how tall to make doorways

Sources of Variability

Within Lab

-Comparison of test results for same tech in same lab performing test at different times

Between Lab

 Comparison of test results for two techs in different labs

Variability

Materials/ Construction 34% Sampling 23%

Testing 43%

Examples of Variability

 Aggregate sampled consistently from one side of a stockpile -Gradation may be influenced by wind blown particles Mix consistently sampled from edge of paved lane -Segregation can influence test methods

Test Variation

When result outside range

Re-evaluate test results before applying any penalty

Independent Variables

Layer Thickness in Specified Limits Asphalt Content in Specified Limits

Dependent Variables

Both Air Voids and VMA within Limits

VMA within Limits

Air Voids within Limits

Dependent Variables

Air Voids, VMA and VFA all within Limits

VMA within

Limits

within

Air Voids

Limits

VFA within Limits

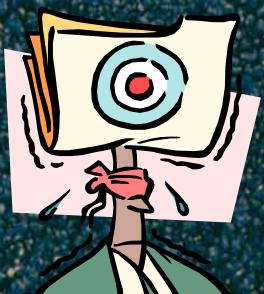
Statistics

Pavement Construction

.321

Statistics

The mathematics of the collection, organization, and interpretation of numerical data



American Heritage Dictionary

Statistics

The science that scares the hell out of normal people.

Dale Decker

Accuracy Versus Precision

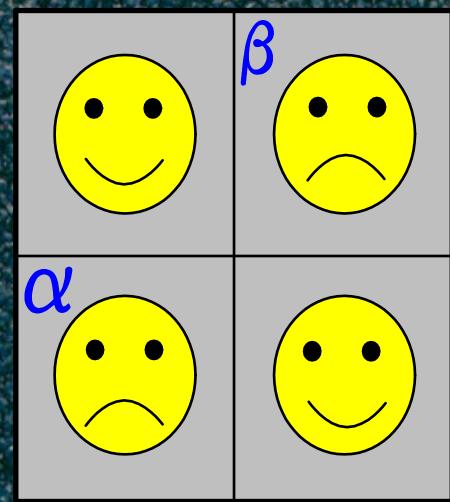
Accuracy

Poor Precision Good Accuracy (unbiased)

Precision

a) G

Good Precision Poor Accuracy (biased)


Accuracy & Precision

Good Precision Good Accuracy (unbiased)

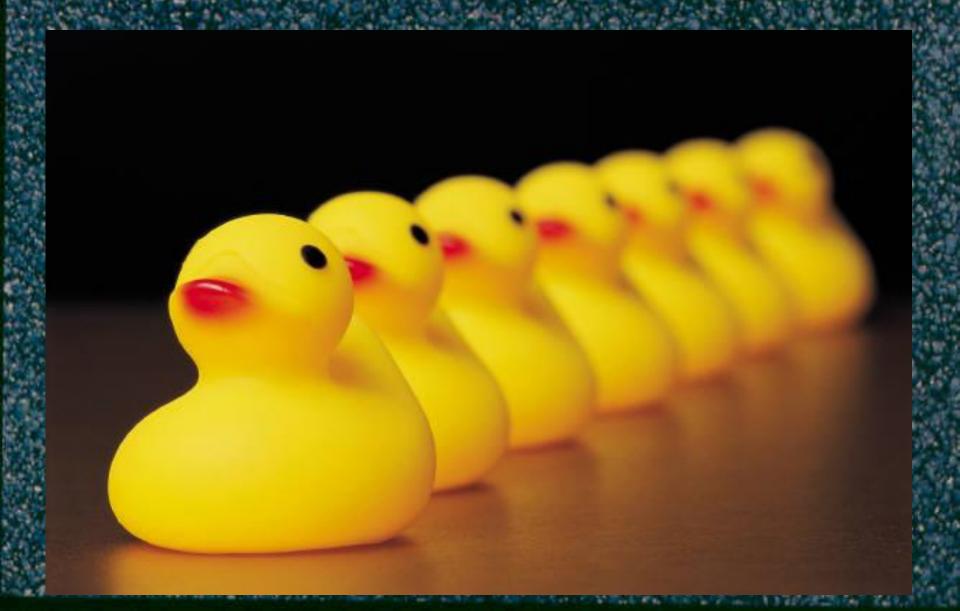
Risk Good Bad Analysis Material Material

Accept

We don't know what we know

Good technology many times not used properly
Test methods/design procedures "customized"
"Don't have time" to do it properly
NIH syndrome

Key Testing Parameters


- Ignition Oven
- Maximum Specific Gravity (Gmm)
- Gradation
- Bulk Gravity of Compacted Mix (Gmb)

Specific Comments on potential sources of variability follow

It's easy to get lazy...

http://go.to/fumpic

Diligence is Required

For All Tests

 Critical to follow standard test methods -Every technician in every lab must run every test exactly the same way! Both contractor and DOT Tests are not an acceptable place for individuality!

Testing Highlights

Important Notice for all Techncians

Ignition Oven

Use AASHTO requirements for sample weight
Ensure oven is calibrated
Verify complete burn
Ensure that oven vent is not impeding exhaust gas flow

Maximum Specific Gravity

 Use AASHTO requirements for sample preparation -Size of sample -Temperature -Timing for performing tests Calibrated vacuum system Proper water temperature

Gradation

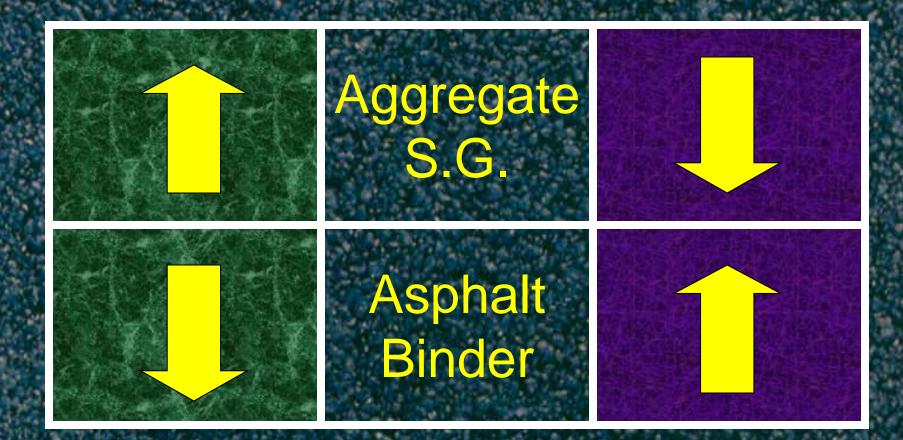
 Inspection of sieves -Wire -Soldering Don't overload sieves Verify weight for original versus retained sample to meet spec requirements

Aggregate Specific Gravity

Critical materials property
Can make a huge difference in volumetric calculations
Must keep up-to-date

Bulk Gravity Test (Gmb)

Maintain water temperature and volume
Consistency in getting SSD condition


Rule-of-Thumb

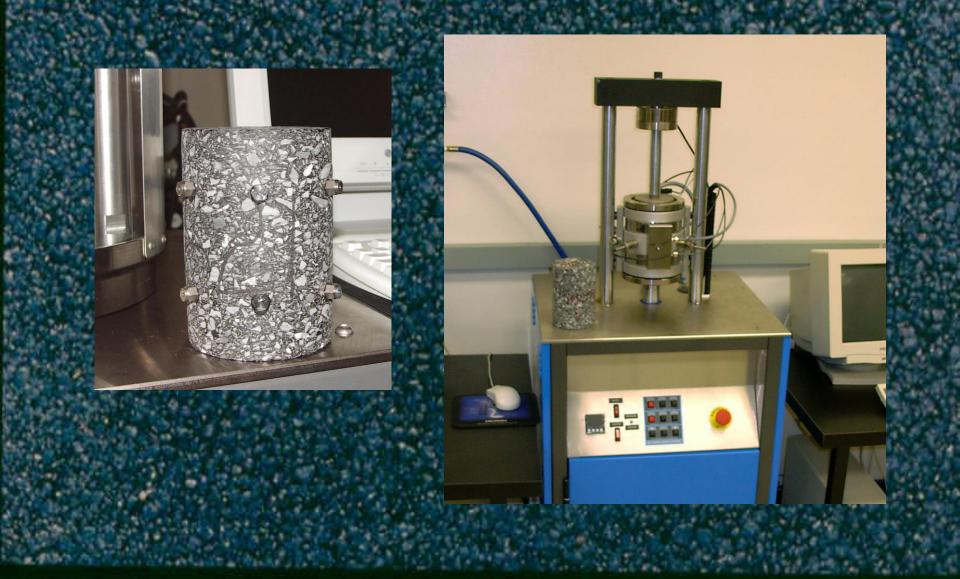
0.100 change in aggregate blend S.G.

Binder requirement changes 0.2% by wt

To maintain equivalent asphalt content by volume for same VMA

Specific Gravity vs. Binder %

Does not account for binder changes due to absorption


Variability

Error in computing combined aggregate blend bulk S.G. of 0.030

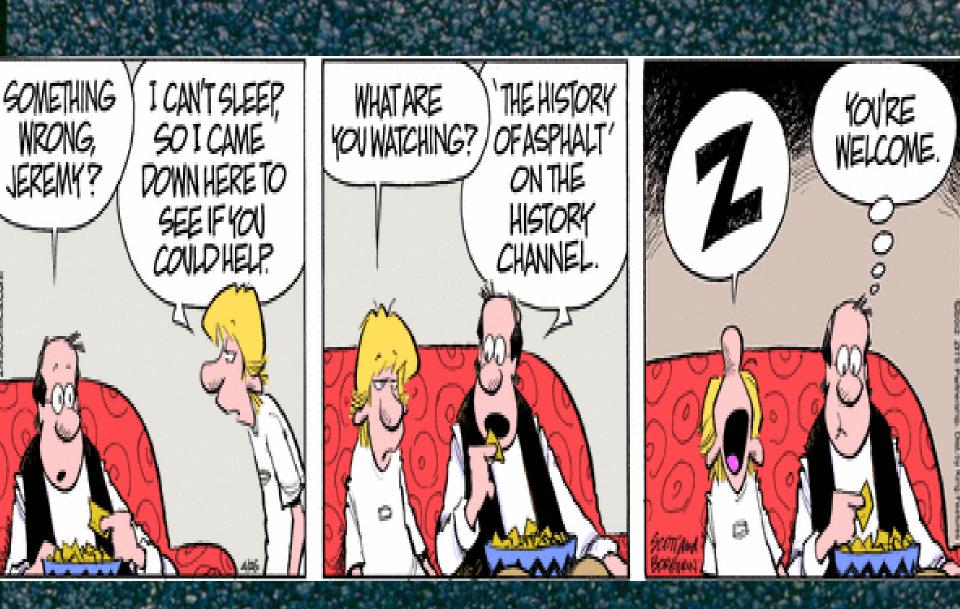
VMA error of ~ 1%

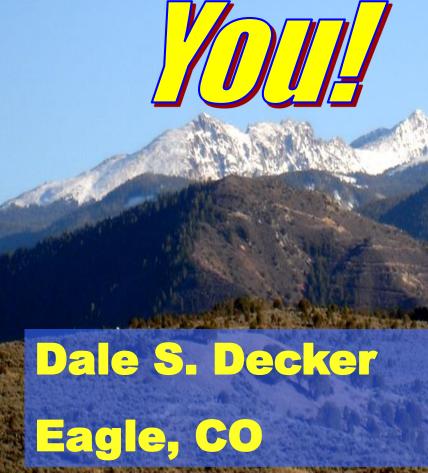
Performance Testing

Performance Testing

Complicated process
Challenge is to use lab data to predict performance on road
Many variables in real world

Key Elements for Performance Test


 Must be economical and easy-to-use Need standardized test Must be applicable to mix design and QC Procedure should be precise and accurate Results must correlate to field performance


Performance Testing

- Critical to future development in industry
- Allows evaluation of new materials
- Can offer innovation opportunities for contractor
 Minimizes risk for design/build and warranty projects

<u>Jank</u>

