

HMA Mix Charac	cteristics	asphalt institute	
Let's start with the basics – A layer of HMA pavement has 3 components:			
1) Aggregate 2) Asphalt Binder 3) Air	Typical % <u>By Mass:</u> 94 - 96 4 - 6 0	Typical % <u>By Volume:</u> 83 - 84 11 - 12 4 - 7	

Volumetrics

We evaluate the quality of the HMA by setting parameters on these three components, which have historically provided a good indication of a mixture's probable performance.

Basic Design Procedure

No matter whether it's Superpave, Marshall, Hveem, Texas Gyratory, or something else, the mix design process has some common procedures and goals.

Volumetrics

phalt institu

Various volumetric properties are then calculated, such as:

- Percent binder
- Percent air voids
- Percent effective binder
- Voids in the Mineral Aggregate (VMA)
- Voids Filled with Asphalt (VFA)
- Dust Proportion (Ratio of % Passing No. 200 sieve to % effective binder)

Mechanical Tests - Moisture Sensitivity

AASHTO T 283

- Prepare set of 6 specimens
- 6.5 to 7.5% voids
 - Represents anticipated in-service voids
- Use 3 specimens as controls
- Remaining 3 specimens are vacuumsaturated 70 to 80%
- Min. 16 hour freezing at 0°F
- 24 Hours in 140°F water bath
- Bring all specimens to test temperature (77°F) and determine indirect tensile strength

Volumetrics Binder Content Let's take a closer look at: The goal of establishing the correct binder content is to: • Binder Content • Provide a sufficient film coating around the aggregates to bind and waterproof • Voids in the Mineral Aggregate (VMA) • Provide enough coating to make the HMA durable • Not so much as to make the HMA susceptible to rutting

Binder Content The correct amount of binder increases as the nominal maximum aggregate size decreases- the finer it is, the more surface area for a given volume							
Nominal Max.	1″	2/1/	1/2″	2/0″			
Aggregate Size		5/4	-/-	5/0	No. 4		

Lab-Molded Density / Air Voids

We use lab-molded properties to estimate the aggregate structure and binder content needed to withstand the anticipated traffic at the designed pavement thickness.

Lab-Molded Density / Air Voids				a lt institu	
	Traffic Level (ESALs)	No. of Gyrations	Required Density		
	< 0.3M	50	96.0%		
	0.3M - < 3M	75	96.0%		
	3M - < 30M	100	96.0%		
	≥ 30M	125	96.0%		
 Number of gyrations change with expected ESALs Density requirement remains the same 					
 To maintain 96.0% density the amount of binder must be increased or decreased if aggregate structure stays the same (the aggregate structure will often have to be changed to maintain volumetrics at different compaction levels) More gyrations → Less Binder 					

VMA asphalt institute							
If the VMA drops below the specified minimums, the asphalt film thickness gets thinner and the pavement becomes less durable							
VINA Requ	menne	anto (/	4431		525)		
Nominal Max. Aggregate Size	1"	3/4"	1/2"	3/8"	No. 4		
Minimum VMA	12.0	13.0	14.0	15.0	16.0		

VMA

Question:

Why can't you add the percent effective binder (P_{be}) to the percent air voids (P_a) to get the VMA?

Answer:

Because P_{be} is a percentage by <u>mass</u> and P_a is a percentage by <u>volume</u>.

Mix Composition

The mix design typically contains (at minimum) the following important information:

- Mix design type (Superpave, SMA, OGFC, etc.)
- Binder grade (PG 64-22, PG 70-22, etc)
- Binder source (ex. Marathon: Tampa, FL)
- Nominal Maximum Aggregate Size of mix
- Aggregate Types (1/2" Chips, Screenings, Sand, etc.)
- Aggregate Sources (ex. Vulcan: Dalton, GA Quarry)
- Percentage of each aggregate used
- Individual and combined aggregate gradations
- Design binder content
- Test data for binder, aggregates, and mix

Mix Composition

The rule of thumb would be to never allow a different material or different source to be used than what is on the mix design. You need to know if your local agency allows:

- Switching binder grade on same design (maybe)
- Switching binder source within same grade (maybe)
- Aggregate Types (never)
- Aggregate Sources (never)
- Changing % of each aggregate used (± small tolerance)
- · Individual and combined aggregate gradations (maybe)
- Changing design binder content (maybe)

Calculating unit weights for input into density gauges

Nuclear or electromagnetic density gauges require a maximum (or voidless) unit weight to calculate density Check local agency to determine whether to use Gmm from:

- mix design
- latest field Rice's test
- calculation using G_{se} from: – mix design
- latest field Rice's test
- calculation using P_b from:
 –job mix formula
 –field lot or sublot
 - field lot or su

