

Compaction is the final step in construction of a quality HMA pavement Good compaction is critical to obtain expected service life It is good practice to: Have a density specification Test for density regularly Make density part of the pay factor

- Optimum lift thickness = 4 x Nominal Maximum Aggregate Size (NMAS)
- Acceptable lift thickness =

3x to 5x NMAS

- Problems Compacting 2x NMAS or less
 6x NMAS or more
- Guidelines especially critical if surface to be laid upon is uneven.

12/9/14

 The mat simply displaces and cracks rather than compacts.

12/9/14

Several factors come into play regarding how fast the mix cools onsite, affecting time available for compaction:

• Ambient air temperature

• Temperature of the existing surface

• Wind speed

• Lift thickness

• As-delivered mix temperature

Vibrator	y Drum	Impacts	per Foot	asphalt institu
Frequency	2 MPH	3 MPH	4 MPH	5 MPH
2000 vpm	11.36	7.58	5.68	4.55
2200 vpm	12.50	8.33	6.25	5.00
2400 vpm	13.64	9.09	6.82	5.45
2600 vpm	14.77	9.84	7.39	5.91
2800 vpm	15.91	10.61	7.95	6.36
3000 vpm	17.05	11.36	8.52	6.82
3200 vpm	18.18	12.12	9.09	7.27
3400 vpm	19.32	12.88	9.66	7.72
3600 vpm	20.45	13.64	10.22	8.18
3800 vpm	21.59	14.39	10.80	8.63
12/9/14				

Longitudinal Joint Compaction

Conclusions
Compaction is the final step in construction of a quality HMA pavement
Good compaction is critical for pavement performance
It is good practice to:

Have a density specification
Test for density regularly
Make density part of the pay factor

