

THIN ASPHALT OVERLAYS FOR PAVEMENT PRESERVATION

Why Thin Asphalt Overlays?

- Shift from new construction to renewal and preservation
- Functional improvements for safety and smoothness are needed more than structural improvements – Perpetual Pavements
- Material improvements
 - Binders Superpave binder spec and polymers
 - SMA, OGFC and Dense-Graded
 - Superpave volumetric mix design
 - Warm Mix Asphalt (WMA)
 - Reclaimed Asphalt Pavement (RAP)
 - Reclaimed Asphalt Shingles (RAS)

Thin Asphalt Overlays are the most popular treatment for pavements

 \bigcirc

1999 AASHTO Survey

Benefits of Thin Asphalt Overlays

- Long life and low lifecycle cost!
- Safety / User
 - -Minimize traffic delays
 - -Staged construction
 - -Smooth surface
 - -Restore skid resistance
 - –No loose stones & minimizes dust
 - –Lower noise

- Structural
 - -Maintain grade & slope
 - –Withstands heavy traffic
 - -Easy to maintain
- Sustainable
 - -Recycled materials
 - -Seals surface & no binder run-off

Topics

- Project Selection
- Materials Selection and Mix Design
- Construction and Quality Control
- Performance
- Conclusions
- Discussion

PROJECT SELECTION

Avoid Projects Needing Structural Rehabilitation!!

Basic Evaluation

- ➢Visual Survey
- Structural Assessment
 - >No structural improvement required
- Drainage Evaluation
 - ➤What changes are needed
- ➢ Functional Evaluation
 - ➢Ride quality
 - ≻Skid resistance

Discussion with Maintenance Crews

Visual Survey

- Part of a good Pavement Management System.
- Get current projectspecific data
- ≻Need to know:
 - Type of distress
 - Extent
 - Severity

Visit the site and validate data.

Types of Distress

- ➢ Raveling
- Longitudinal Cracking (not in wheelpath)
- Longitudinal Cracking (in wheelpath)
- Transverse Cracking
- ➢ Alligator Cracking
- ≻ Rutting

Raveling

Longitudinal Cracking (not in wheelpath)

Longitudinal Cracking (wheelpath)

Temporary Fix for Minor Distress

Transverse Cracking

Alligator (Fatigue) Cracking

Temporary Fix for Minor Distress

Rutting or Shoving

Surface Failure – Milling Required

Severe Structural Failure

Ride Quality and Skid Resistance

Rough surfaces should be milled

Skid problems can be milled, but not required

Noise can be reduced

NCAT Noise Trailer

Drainage Evaluation

How do you select the mix type for a thin overlay?

Information Series 128

U.S. Department of Transportation Federal Highway

Administrat

NATIONAL ASPHALT PAVEMENT ASSOCIATION

HMA Pavement Mix Type Selection Guide

Recommended Mix Types Surface Courses

NJAPA

Mix Type

Min Lift Thick Range, mm

If a Thin Overlay is the answer you need to decide:

- Distresses
- Roughness
- Considerations for Curb Reveal and Drainage

> Materials

- Traffic
- Availability
- Climate
- > Thickness
 - NMAS
 - Geometrics

Surface Preparation

 \bigcirc

	Mill	Fill Cracks with Mix	Clean and Tack
Raveling			
Long. Crack – not in w.p.	<u>V</u>	√	
Long. Crack – w.p.	×		
Transverse Crack	V.	×.	
Alligator Crack			
Rutting			NJAPA

Materials & Mix Design

- Materials Selection
- Mix Design for Dense-Graded Mixes
- Other Mix Types

Materials Selection - Aggregate

- Thin overlays need small NMAS
 - ■Thin overlays <u><</u> 1.5 inches thick
 - Aggregate size between 4.75 and 12.5 mm NMAS
 - Ratio of lift thickness to NMAS range 3:1 to 5:1
- ➤ Quality
 - LA Abrasion: 35-48 maximum
 - Sodium Sulfate: 10-16 maximum
 - CA Fractured Faces (does not apply to 4.75 mm)
 - •2 or More: 80-90
 - •1: 10-100
 - Sand Equivalent: 28-60
 - FA Angularity (Uncompacted Voids): 40-45

 \bigcirc

Materials Selection - Binder

- Most specifications use PG system to select binder grade based on climate and traffic
 - Minnesota Unmodified binder
 - Ohio Polymer modified PG 64-22 or PG 76-22
 - New York PMA for 6.3 mm & special situations for other mixes
 - New Jersey PG 76-22 for high performance mix
 - North Carolina depends upon traffic level

Materials Selection - RAP

- Small NMAS mixes should utilized fine RAP
- ➢ RAP or RAS will help
 - Stabilize cost by reducing added asphalt and added aggregate
 - Prevent rutting
 - Prevent scuffing
- Use maximum allowable while maintaining gradation and volumetrics

Mix Design

- Laboratory Compaction
 - Low Volume 50 gyrations in MD and GA
 - Medium Volume 60 to 75 in MD, NY, AL
 - •High Volume 60 (AL) to 125 (UT)
 - Needs to be enough compaction for interlock without fracturing aggregate
- Volumetrics
 - Void Requirements Mixes are relatively impermeable
 - VMA Should increase as NMAS decreases
 - Asphalt Content Should depend on voids and VMA

Mix Design Requirements

 \bigcirc

NMAS	12.5	mm	9.5	mm	6.3 mm	4.75 mm		1
State	AL	NC	NV	UT	NY	MD	GA	OH
Comp. Level	60			50-125	75	50/65	50	50/75
Design Voids			3-6	3.5	4.0	4.0	4.0-7.0	3.5
% VMA	15.5 min		12-22		16 min			15 min
% VFA				70-80	70-78		50-80	
% AC	5.5 min	4.6-5.6			6.0 min	5.0-8.0	6.0-7.5	6.4 min

Permeability

 \mathcal{O}

CONSTRUCTION & QUALITY CONTROL

Construction - Production

Aggregate
 Proper stockpiles

 Slope and Pave
 Cover, if needed

 Moisture content

- > Plant operations
 - Slower because
 - •More time to coat
 - •Higher moisture content
 - •Thicker aggregate veil
 - Aggregate moisture management
 - WMA can help coat aggregates lubricity

Construction - Production

- ➢ RAP − Process for size and consistency
 - Max size < NMAS</p>
- Storage and Loading
 - Follow normal best practices
- ≻ Warm Mix
 - Increase haul distance
 - Pave at cooler temperatures
 - Achieve density at lower temperatures
 - Extend paving season
 - Pave over crack sealer

Construction – Paving Surface Preparation

- Remove defects
- Roughen surface
- Improve smoothness
- Provide RAP
- May eliminate need for tackSize machinery properly

Tack

- Emulsion or hot asphalt
- Polymer emulsion or unmodified
- Rate: 0.10 to 0.15 gal/sy (undiluted emulsion)

Construction – Paving Placement and Compaction

➢ Paving

- Best to move continuously
- MTV or windrow can help
- Cooling can be an issue
 1" cools 2X faster than 1.5"
 Warm mix

Compaction

- Seal voids & increase stability
- Low permeability
- No vibratory on < 1"

Quality Control - Plant

Aggregate
 Gradation
 Moisture Content

- ➢ Mix Volumetrics
 - Air Voids
 - •VMA
 - Asphalt Content
 - Gradation

Quality Control - Field

➢ Field Density

- Thin-lift NDT gauges OK for > 1" mat
- Cores may not be representative
- Permeability not as big an issue

➢ Ride Quality

- Depends on
 - Condition of existing pavement
 - •Surface preparation
 - •Overlay thickness

Specification should be based on existing conditions

Performance

- Immediate Benefits
- Pavement Life
- Economics

Immediate Benefits

- ➢ Pavement Condition (Labi et al. (2005))
 - 18 to 36% decrease in roughness
 - •5 to 55% decrease in rut depth
 - 1 to 10% improvement in condition rating
- Noise
 - Corley-Lay and Mastin (2007): 6.7 dB reduction on overlaid PCC
 - FHWA (2005): 5 dB reduction on overlaid PCC in Phoenix
- 3dB reduction = 1/2 traffic volume

Pavement Life

 \bigcirc

Location	Traffic	Underlying Pavement	Performance, yrs.
Ohio	High/Low	Asphalt	16
	Low	Low Composite	
	High	Composite	7
North Carolina		Concrete	6 – 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 – 10
New York		Asphalt	5 – 8
Indiana	Low	Asphalt	9 – 11
Austria	High/Low	Asphalt	<u>></u> 10
	High	Concrete	<u>></u> 8
Georgia	Georgia Low		10

Pavement Life

 \bigcirc

Location	Traffic	Underlying Pavement	Performance, yrs.
	High/Low	Asphalt	16
Ohio	Low	Composite	11
	High	Composite	7
North Carolina		Concrete	6 - 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 – 10
New York		Asphalt	5 – 8
Indiana	Low	Asphalt	9 – 11
Austria	High/Low	Asphalt	<u>></u> 10
	High	Concrete	<u>></u> 8
Georgia	Low	Asphalt	10

Pavement Life

 \bigcirc

Location	Traffic Underlying Pavement		Performance, yrs.
	High/Low	Asphalt	16
Ohio	Low	Composite	11
	High	High Composite	
North Carolina		Concrete	6 – 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 - 10
New York		Asphalt	5 – 8
Indiana	Low	Asphalt	9 - 11
Austria	High/Low	Asphalt	<u>></u> 10
	High	Concrete	<u>></u> 8
Georgia		Asphalt	10

Economics

≻ Chou et al. (2008):

 Thin overlays on asphalt – almost always most cost effective

 Thin overlays on PCC – not as cost effective, but greater deterioration prior to overlay

> 2008 NAPA Survey of State Asphalt Associations

Treatment	Expected Life, yrs	Range	Cost, \$/SY	Range	Annual Cost, \$/lane-mile
Chip Seal	4.08	2.5 - 5	2.06	0.50 – 4.25	3,554.51
Slurry Seal	3.25	2 - 4	1.78	1.00 – 2.20	3,855.75
Micro- surfacing	4.67	4 - 6	3.31	2.30 – 6.75	4,989.81
Thin Surfacing	10.69	7 - 14	4.52	2.40 - 6.75	2,976.69

Economics

Conclusions - Benefits

- > Thin Overlays for Pavement Preservation
 - Improve Ride Quality
 - Reduce Distresses
 - Maintain Road Geometrics
 - Reduce Noise
 - Low Life Cycle Costs
 - Provide Long Lasting Service
- Place before extensive rehab required
- Expected performance
 - 10 years or more on asphalt
 - •6 to 10 years on PCC

Conclusions – Check-list

- ✓ Evaluate
 - ✓Candidate for thin asphalt overlay?
 - ✓ Distresses
- ✓ Determine Mix Type
- ✓ Proper Surface Preparation
- ✓ Materials
- ✓ Thickness
- Production, Construction and Quality Control

Thin Asphalt Overlays

Thin asphalt overlays are a popular solution to pavement preservation. They are economical, long-lasting, and effective in treating a wide variety of surface distresses to restore ride quality, skid resistance, and overall performance.

Resources

- NCAT website: <u>www.ncat.us</u>
- NAPA Publication:

– IS-135, "Thin Asphalt Overlays for Pavement Preservation"

• Transportation Research Record:

– Labi, et al. 2005.

• Ohio DOT:

- Chou, et al. April 2008.

Upcoming Events

- New Jersey Paving Conference March 14 at The College of New Jersey, Ewing
- TransAction April 4-6 at the Tropicana Hotel, Atlantic City

