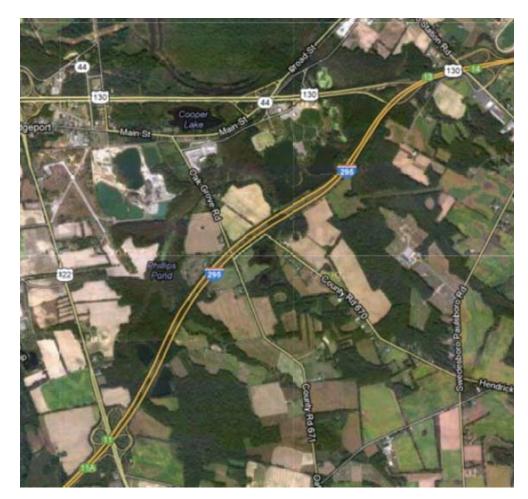
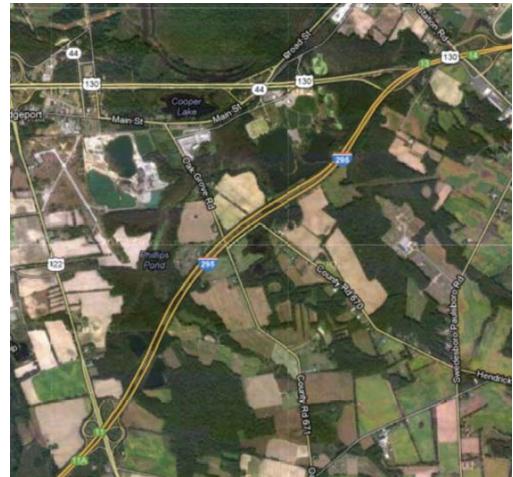
NJDOT HRAP – Performance

Thomas Bennert, Ph.D. Rutgers University, NJ


NJAPA Paving Conference 3/14/2017

Presentation Overview

 I-295 Project (Constructed 2012)
 Factors to Consider HRAP Mixture Performance


NJDOT HRAP – I295

- I295 SB Milepost 11.26 to 14.48
- Contractor
 - Arawak Paving
- Supplier
 - R.E. Pierson
- Asphalt liquid
 - NuStar Refining

NJDOT HRAP – I295

- I295 SB Milepost
 11.26 to 14.48
- Project requirements
 - 9.5M76 HRAP Surface
 - APA < 4.0 mm</p>
 - OT > 175 cycles
 - 12.5M64 HRAP Intermediate
 - APA < 7.0 mm
 - OT > 100 cycles

Mix Design Prep

Fractionated RAP & Testing

Sample No.			Fine RAP		Coarse RAP	
Sieve Size			% Passing	% Passing	% Passing	% Passing
inch	mm		#1	#2	#3	#4
50.0	2	%	100	100	100	100
37.5	1 1/2	%	100	100	100	100
25.0	1	%	100	100	100	100
19.0	3/4	%	100	100	100	100
12.5	1/2	%	100	100	100	99.3
9.5	3/8	%	100	100	94.7	94.9
4.75	No. 4	%	94.7	95.3	40.5	44
2.36	No. 8	%	72.7	74.7	25.1	27.8
1.18	No. 16	%	58.7	59.3	22.3	24.2
0.600	No. 30	%	44.6	45.9	18.7	20.8
0.300	No. 50	%	25.8	26.3	12.6	13.6
0.150	No. 100	%				
0.075	No. 200	%	9.70	9.20	5.40	5.40
Asphalt		%	6.93	7.08	3.40	3.90

83.8-18.8 (29.1) PG82-16

Mix Design

- Asphalt supplier ran multiple designs to meet the performance requirements – all initially failed
 - Due to lack of time, complete mixture design was thought not to be practical
 - Modified existing design to meet specification
 - Different binder grades softer PG did not work!
 - Excessive rutting
 - Increase asphalt binder; back to "standard" binder
 - Fail fatigue cracking

Mixture Design Trials – Initial

Surface Course

PG GradeNMASRAP %OT (cycles)APA Rut76-229.5mm20%3655.53mm76-229.5mm30%1294.37mm

Intermediate Course PG Grade NMAS RAP % **APA Rut** OT (cycles) 9.28mm 58-28 30% 12.5mm 1442 58-28 12.5mm 40% 8.56mm 503

Mix Design Trials

- Mix Supplier contacted binder supplier to design a binder to help achieve desired mixture performance
 - Reminder no PG grade specified
- Mix supplier resubmitted another 2 variations (each) at different RAP contents

Mixture Design Trials – Binder Modified

Surface Course

 PG Grade
 NMAS
 RAP %
 OT (cycles)
 APA Rut

 76 HRAP
 9.5mm
 25%
 390
 3.16mm

 76 HRAP
 9.5mm
 30%
 121
 3.66mm

Intermediate Course PG Grade **NMAS** RAP % OT (cycles) **APA Rut** 64 HRAP 35% 6.40mm 12.5MM 529 64 HRAP 12.5MM 40% 80 5.94mm

Final HRAP Mix Designs

9.5M76 (SURFACE COURSE)

- 25% RAP
- 6.0% Total AC
 - 27.4% Binder Replacement
- PG70-22 (74.6-26.99)
- 25% Fine RAP Fraction Only

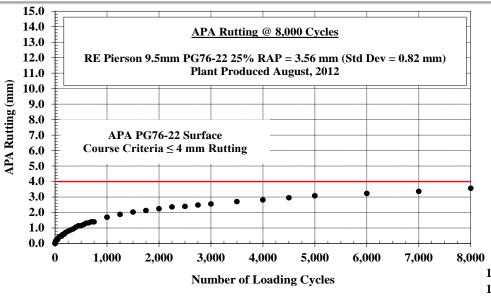
12.5M64 (INTERMED. COURSE)

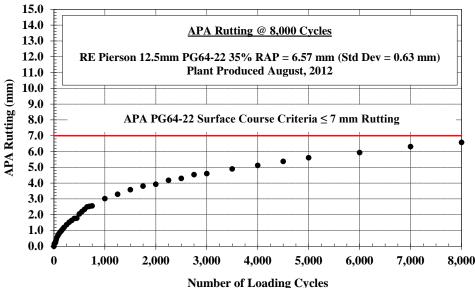
- 35% RAP
- 5.8% Total AC
 - 29.7% Binder Replacement
- PG64-28 (64.8-28.29)
- 17.5% Fine RAP/ 17.5%
 Coarse RAP

Plant Production

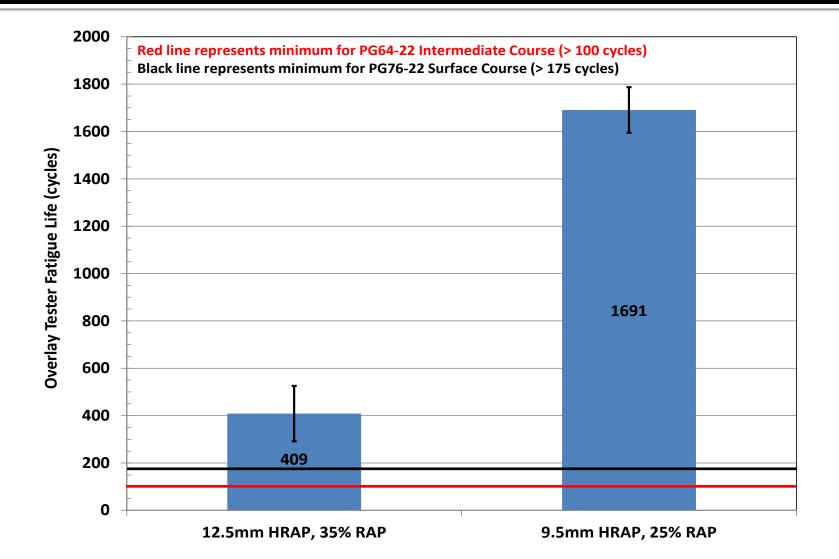
Plant Production

- Multiple RAP bins for fractionated RAP
- Separated RAP piles solely for project
- Remixing RAP piles while feeding bins




Plant Production

- Mix supplier utilized private job to work out any issues a week before construction
- Sampling conducted 150, 300, 450 tons
 - Recognized possible binder contamination in first 150 tons sampled – failed performance specs
 - Some mix may need to be discarded depending on plant set up
- Final project constructed in August 2012
 - 900 tons of 9.5M76 HRAP
 - 1700 tons of 12.5M64 HRAP


Ex. – 1st Lot APA Rutting Performance

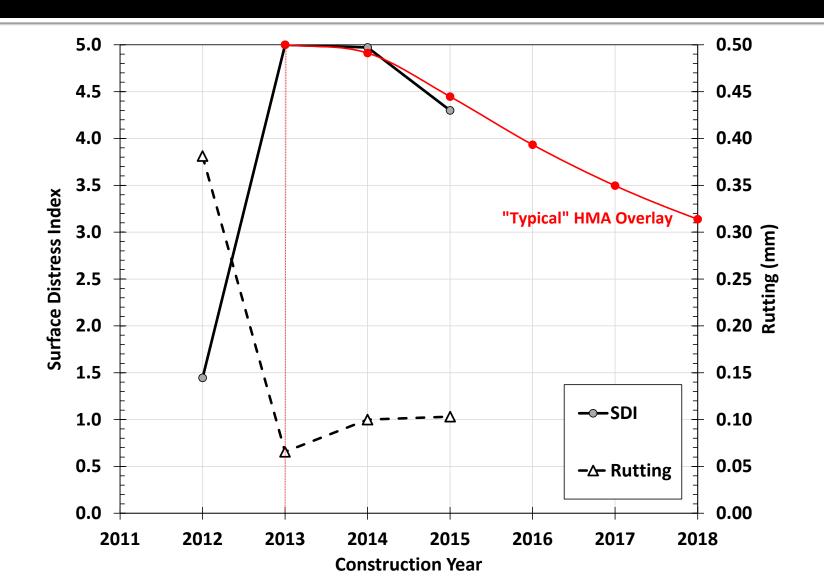
64ºC Test Temp.; 100psi Hose Pressure; 100 lb Load Load

Ex. – 1st Lot Overlay Tester

Final Product – October 2012

Final Product – October 2012

Densities


- For plant production, NJDOT allowed lower air voids in gyratories than "normal" HMA
 - 95% to 98.5% of Gmm
- 9.5M76 HRAP Cores
 - Lot #1: Average = 7.4% air voids
 - Lot #2: Average = 5.9% air voids
- 12.5M64 HRAP Cores
 - Lot #1: Average = 4.6% air voids (Full bonus)
 - Lot #2: Average = 5.7% air voids (Full bonus)
 - Lot #3: Average = 6.5% air voids

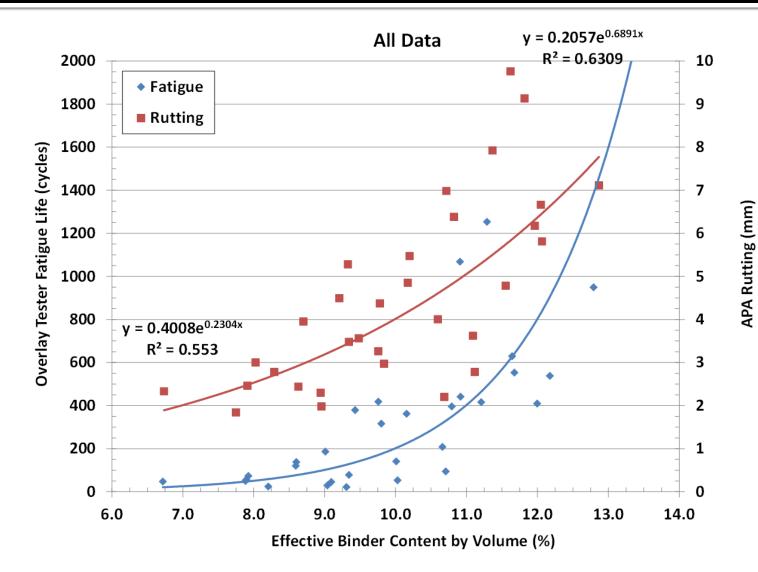
IRI

9.5M76 WMA

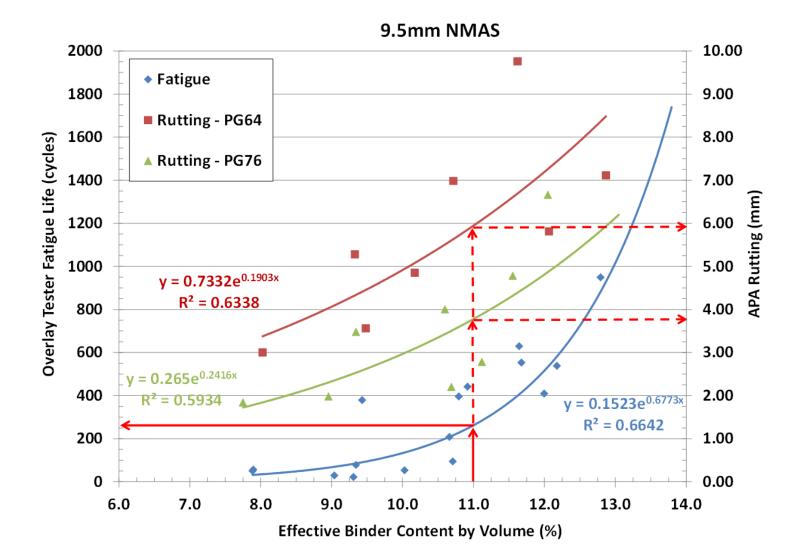
- 11.54 11.26: Average = 57.8 in/mile
- 13.93 11.54: Average = 37.7 in/mile Ave = 57.5 in/mile
- 14.39 13.93: Average = 76.9 in/mile_
- 9.5M76 HRAP
 - 14.39 13.93: Average = 57.8 in/mile
 - 13.93 11.54: Average = 44.0 in/mile Ave = 54.2 in/mile
 - 11.54 11.26: Average = 60.8 in/mile_

Field Performance to Date

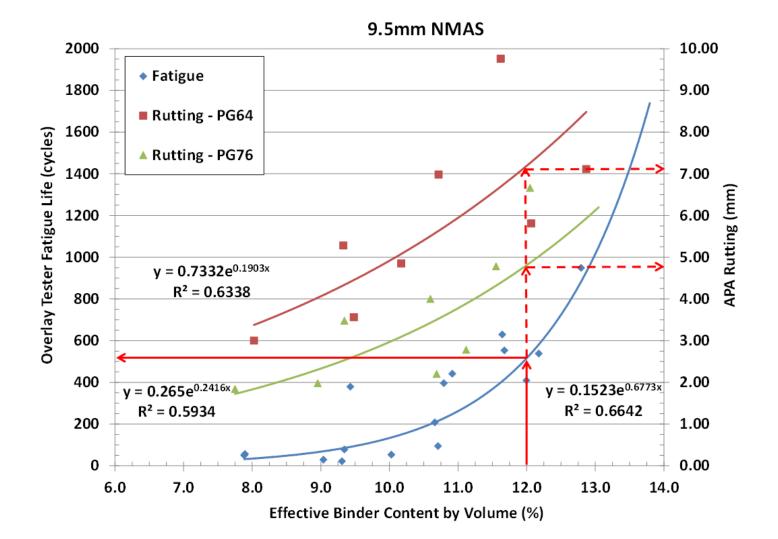
Designing and Producing HRAP for Performance Designing and Producing HRAP for Performance

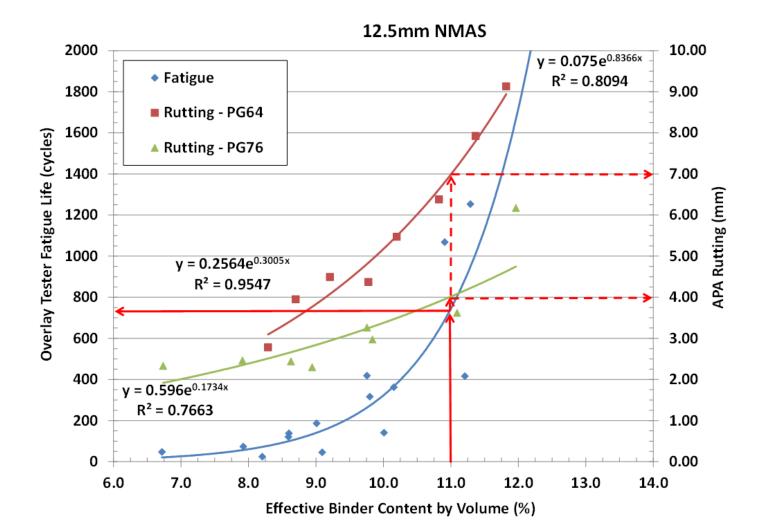

Increase Your Effective Asphalt Content

Effective Asphalt Content by Volume (VBE)


- For HRAP, Voids in Mineral Aggregate (VMA) increased 1% over typical NJDOT mixtures
 - Result: Increase Effective Asphalt Content by Volume (VBE) by 1%
 - VBE = VMA Air Voids
- Example: 9.5 NMAS
 - Typical HMA: Design AV = 4%; Min. VMA = 15%; Min VBE = 11%
 - HRAP: Design AV = 4%; Min. VMA = 16%; Min VBE = 12%
- Fatigue/Durability of asphalt mixtures highly dependent on Effective Asphalt Content by Volume
 - NCHRP Projects 9-25/9-31

APA Rutting and Overlay Tester Fatigue vs Effective Asphalt Content by Volume


- 9.5 &12.5mm
 NMAS
- PG64-22 & PG76-22
- 2 aggregate sources
- 15% RAP

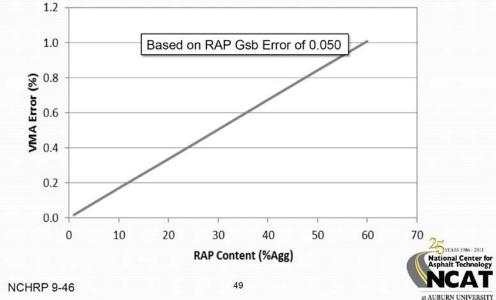

9.5 mm NMAS Mixtures – Current VMA Minimum

9.5 mm NMAS Mixtures – HRAP VMA Minimum

12.5 mm NMAS Mixtures – HRAP VMA Minimum

For HRAP: Increase Your Effective Asphalt Content by Volume (VBE)

- VBE = VMA Air Voids
- As VBE increases, additional effective asphalt in the asphalt mixtures
 - Improves durability
 - Fatigue resistance
 - Thicker films to reduce effects of oxidative aging
- Packing characteristics of aggregate skeleton directly influence VMA
 - Gradation
 - Aggregate surface texture
 - Aggregate shape
 - Reduce fine content
- Are we measuring Gsb correctly/accurately?


Designing and Producing HRAP for Performance

Are You Determining VMA Properly? Aggregate G_{sb} Impacts

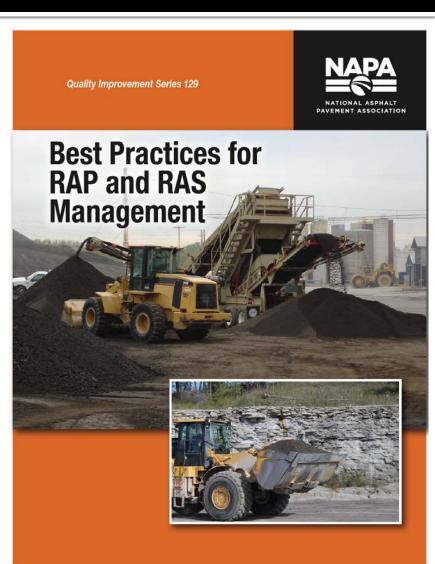
Basic HMA Volumetrics

VMA directly related to G_{sb} of aggregate blend
 When RAP used, do we really know the G_{sb}?

Potential VMA Error

 $V_a = \left(1 - \frac{G_{mb}}{G_{mm}}\right) x 100$

$$VMA = \left(100 - \frac{G_{mb}P_s}{G_{sb}}\right)$$


$$VFA = \left(\frac{VMA - V_a}{VMA}\right) x100$$

 $V_{be} = V\!M\!A - V_a$

Determining G_{sb} for High RAP

- Option 1: Estimate G_{sb} from G_{mm} and P_{ba}
 - Determine G_{mm} of RAP sample
 - Calculate G_{se} using:


$$G_{se(RAP)} = \frac{100 - P_{b(RAP)}}{\frac{100}{G_{mm(RAP)}} - \frac{P_{b(RAP)}}{G_b}}$$

Determining G_{sb} for High RAP

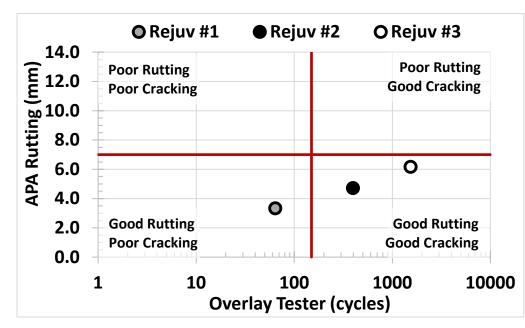
- Option 1: Estimate G_{sb} from G_{mm} and P_{ba}
 - Estimate absorbed binder,
 P_{ba}, based on historical
 values at plant
 - Calculate G_{sb} using:

 $G_{sb(RAP)} = \frac{G_{se(RAP)}}{\frac{P_{ba} \times G_{se(RAP)}}{100 \times G_b} + 1}$

Determining G_{sb} for High RAP

 Option 2: Recover aggregate using solvent extraction or ignition, then conduct AASHTO T84 & T85

Designing and Producing HRAP for Performance


Try Using an Additive

Evaluate Different Additives

- HRAP specification allows for the use of different additives
 - Rejuvenators
 - WMA
 - Specialty designed asphalt binder
- See how additives work with YOUR MIX not all additives are the same

APA and Overlay Tester Performance with Different Rejuvenators

- Not all additives created equal
 - Example: Rejuvenators
- Same mix; different rejuvenators
- Rejuvenator #1
 - Dosage rate too low/RAP content too high
- Rejuvenator #2
 - Optimized dosage rate for <u>that</u> RAP content
- Rejuvenator #3
 - Can reduce dosage rate, or try increasing RAP content

HRAP Performance Conclusions

Increase the VBE

- Reason for VMA increase in HRAP Spec
- Increasing VBE will improve fatigue & durability
- Understand your mixture
 - RAP (binder properties; asphalt content; aggregate gravities)
 - Can you modify your aggregate blend to improve VMA
 - G_{sb} directly impacts VMA calculation!
- Rejuvenators available but need to evaluate with YOUR MATERIALS
- Formulated asphalt binder
 - Specially formulating an asphalt binder for YOUR MATERIALS that will meet performance specifications

Thank you for your time! Questions?

Thomas Bennert, Ph.D. Rutgers University 609-213-3312 bennert@soe.rutgers.edu