60th Annual New Jersey Asphalt Paving Conference

Center for Advanced Infrastructure and Transportation

New Jersey Asphalt Pavement Association

Center for Advanced Infrastructure and Transportation

Lab Performance Testing Procedures for Asphalt Plants

Thomas Bennert, Ph.D. Rutgers University Center for Advanced Infrastructure and Transportation (CAIT)

Performance Testing for the Suppliers

- Rutgers University working on putting together a set of performance tests (rutting and cracking) that can be used by asphalt plants
 - Time for testing and analysis
 - Relationship to current test methods/field performance
 - Cost (equipment, supplies)

Who Remembers This?

- Most plants still have Marshall equipment
 - TSR's
 - FAA work
- Proposing the use of Marshall equipment as the loading frame for new tests
- Rutting and cracking performance can be assessed with minor investments

Rutting (Permanent Deformation)

QC Lab Testing – Rutting – High Temperature IDT (HT-IDT)

- High temperature IDT
 - Uses TSR IDT frame with Lottman head (used for TSR; AASHTO T₂8₃)
 - Gyratory compacted samples (set air void level to specified)
 - Condition in oven for >4 hours; water for >2 hours (place in bag to keep dry)
 - 50 mm/min (2 inch/min) deformation rate
 - Test temperature is 10°C lower than local climate (LTPPBind 3.1, 98% Reliability, 20 mm below surface, not corrected for traffic or vehicle speed)

• For
$$NJ = 44^{\circ}C$$

- Indirect tensile strength (IDT) is related to the shear strength of materials
 - Mohr-Coulomb
- Rutting a function of the shear strength
 - Cohesion (C) ≈ binder properties
 - Friction (φ) ≈
 aggregate properties

Gokhale (2001) compared **HT-IDT to Superpave** Shear Tester (SST) **Repeated Shear test** maximum permanent shear strain (MPSS) Found good relationship for lab test (HT-IDT vs MPSS) and related to field rutting at FHWA ALF

 Issue – test conducted at 7.5 mm/min & 33°C

- NCHRP 9-33 (AAT, 2010) proposed using test method at faster loading speeds (50 mm/min) & warmer test temperature
 - Temps based on LTPPBind software
 - For NJ, temp = 44°C
- Also proposed limits, but not verified with actual field performance

Traffic Level	Minimum HT-IDT Strength		
Million ESAL's	psi		
< 3			
3 to < 10	29		
10 to < 30	49		
≥ 30	67		

- Bennert (2013) conducted study for FAA showing strong relationship between HT-IDT & Flow Number (Repeated Load)
 Bennert (2015) evaluated
- 8 different PANYNJ mixes and showed strong relationship between HT-IDT & APA rutting

- Since 2015, Rutgers continuing to develop database of APA vs HT-IDT
 - Red symbols represent NCHRP 9-33 relationships
- Almost 20 different HMA mixes (P401, Superpave, SMA, polymer & neat binders included)

How Can Asphalt Suppliers Use Information?

- HPTO, BDWSC, BRIC & HRAP all require APA testing but equipment not readily available for everyone
- Suppliers can use relationship to provide guidance whether or not mixture will pass rutting requirement
- Test quick enough to be used during daily QC
- NOT to be used for acceptance NJDOT still using and requiring APA – solely used for <u>GUIDANCE</u>
 - Test method allows asphalt suppliers to evaluate mixes on their own (i.e. – impact of RAP%, WMA, rejuvenators, binder grade/type)

HT-IDT vs APA Rutting – Preliminary Guidance Values

	ΑΡΑ	HT-IDT		
	(mm)	(psi)		
BRIC/HRAP	< 6	> 25 psi		
HPTO/HRAP	< 4	> 45 psi		
BDWSC	< 3	> 60 psi		
		•		

Fatigue Cracking

Asphalt Mixture Fatigue Cracking

- Over the past 5 years, Rutgers has been evaluating a number of fatigue cracking/durability tests for asphalt mixtures and binders
 - Mixture to field performance
 - Binder to field performance
 - Mixture to binder relationships
- Looking for "simplified" method that is related to field performance and sensitive to volumetrics and aging
- On-going/Initiating research with both NJDOT & FAA

QC Lab Testing – Fatigue – SCB Flexibility Index

- Semi-circular Bend Flexibility Index Test
 - Can use Marshall equipment
 - Modification to Lottman Head fixture required or
 - 3 point bending fixture required (≈ \$750)
 - 25°C
 - 50 mm/min deformation rate
- Sample prep, testing speed, and analysis fast enough to be used during daily QC testing

SCB Flexibility Index

Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend... Page 1 of 14

6

Displacement (mm)

History of SCB Flexibility Index

- Developed at University of Illinois in 2014 combining the concept of fracture energy and post-peak strength
- Early testing showed:
 - Sensitive to volumetrics
 - Sensitive to recycled AC (RAP & RAS)
 - Correlated to field performance

History of SCB Flexibility Index – Rutgers Experience

- Examples of some of the work to date
 - FHWA ALF Experiment on Recycled Asphalt
 - PANYNJ's Airfield Durability
 - SCB Flexibility Index to Overlay Tester Correlation
 - Resultant Proposed Criteria

FHWA Accelerated Loading Facility (ALF)

- ALF Loading Conditions
 - Controlled 20°C @ 20mm depth
 - Loading only in one direction
 - Lateral wander
 - 425 Super Single Tire
 - 100 psi inflation
 - 14,200 lb load

FHWA Accelerated Loading Facility (ALF)

- Cracking performance measured and quantified in two indices
 - Number of cycles until 1st Crack observed
 - Cracking Rate

FHWA Accelerated Loading Facility (ALF)

- Question: How well do asphalt mixture and binder tests correlate to field measured fatigue performance?
 - RAP, RAS, WMA
- 10 cores taken from each lane
- Mixture and binder testing conducted on bottom 2 inches of field core to minimize surface aging

SCB FI vs Cycles to 1st Crack

SCB FI vs Cracking Rate

PANYNJ – Newark and JFK Runway Fatigue Cracking

- Evaluate different runway P401 mixtures for their respective fatigue cracking performance
 - 6 different mixes (1 seal coated so eliminated from analysis)
 - Different asphalt binders
 - Different field performance
 - 3 years performing poorly
 - 15 years performing well
- "Fatigue" asphalt binder testing
- Mixture fatigue cracking tests
- Ultimately can we find a binder parameter for purchase specification and mixture specification for Quality Control to promote durable asphalt mixtures

PANYNJ Field Observations

- No rutting
- Longitudinal and transverse cracking observed
- Cracking top-down
 - Stops approximately 0.5" to 0.75" below surface

Semi-circular Bend (SCB) Flexibility Index (FI) – Corrected for Thickness

Preliminary Relationship with Overlay Tester

- Initial testing shows possible relationship between SCB Flexibility Index and Overlay Tester
- Further evaluating in NJDOT Research Study
 With NJ's work showing good relationship between field performance & Overlay Tester, SCB Flexibility Index may be used for GUIDANCE

Specimen Prep – Initial Cut

(1)

(2)

(3)

Specimen Prep – Cutting Notch

(2)

(1)

Specimen Prep - Dimensions

(1)

(2)

(3)

SCB Using Marshall Machine

SCB Using Marshall Machine -Fixture

GILSON COMPANY, INC.	Materials Testing Equ Contact Us Today! 800 Search Our Products	uipment -444-1508 Q	P	* *	•	2
PRODUCTS MY GILSON	REQUEST CATALOG NE	WS BLOG	VIDEOS	CONTACT U	IS	
SHOP OUR PRODUCTS	Semi-Circular Bend (SCB) Test	Fixture				
> New Products	Home « Asphalt « Asphalt Mix Design «	Marshall Testing « Sen	ni-Circular Bend (SCB) Test Fixture		
➢ Sieving	G+1 Like Share Tweet in Share					
Sieve Shakers						
➢ Screening		Model: MS-45				
Sampling & Dividing		Price: \$680.00				
➢ Aggregates		1 Add T	o Cart 🗋 📁			
➢ Asphalt			e santa la Fra			
➢ Concrete		🕂 Email a frie	nd \oplus \oplus	Add to favorites	\oplus	
➢ Soils						
Ovens & Furnaces						
Crushers, Pulverizers & Mills						
Temperature & Humidity	NOS -					
Pans, Tools & Glassware						
Scales & Balances	MS-45 pictured with asphalt specimen					

SCB Flexibility Index

Potential SCB Implementation – Analysis

Rutgers University SCB Analysis Using Marshall Press

Sheet Preparation

- Make sure the following "Add-Ins" are enabled in Excel. You can get to Figure 1 by clicking "File -> Options -> Add-Ins". Click "Go..." for Manage: Excel Add-ins and ensure the three Add-Ins in Figure 2 are selected on your machine.
- Copy the tab as needed for the amount of samples you would like to analyze in a single Excel Workbook.

Figure 1 "Accessing Settings"

How Can Asphalt Suppliers Use Information?

- BRIC, HRAP & HPTO (2017) all require Overlay Tester testing but equipment not readily available for everyone
- Suppliers can use relationship to provide guidance whether or not mixture will pass cracking requirement
- Test quick enough to be used during daily QC
- <u>NOT</u> to be used for acceptance NJDOT still using and requiring Overlay Tester – solely used for <u>GUIDANCE</u>
 - Test method allows asphalt suppliers to evaluate mixes on their own (i.e. – impact of RAP%, WMA, rejuvenators, binder grade/type)

Overlay Tester vs SCB Flexibility Index – Preliminary Guidance Values

Mix Type	x Type OT (cycles)		
HRAP	> 175	> 8	
BRIC/HPTO	> 700/750	> 14	

QC Lab Performance Testing

- Laboratory tests available for asphalt suppliers to provide help in design and material evaluation
 - Not intended for acceptance ONLY GUIDANCE
- Ultimately acceptance would continue to be conducted with APA (rutting) and Overlay Tester (fatigue) until more experience gained
- These proposed methods will allow:
 - Asphalt suppliers to evaluate mixtures prior to design submittal
 - Possible use during QC testing
 - With more research/experience, potential use as QA tests that can be conducted by both agency and industry with little dollar investment

Thank you for your time! Questions?

Thomas Bennert, Ph.D. Rutgers University 609-213-3312 bennert@soe.rutgers.edu