

Enhanced Durability Through Increased In-Place Pavement Density

Workshop Outline

- Introduction
- Mixture Factors Effecting Compaction
- Compaction Best Practices
- Other Best Practices
- Measurement & Payment
- New Technologies
- Wrap Up

- Compaction is essential for long-term pavement performance
- There are many compaction enhancements currently in use
- Compaction goals can be improved

Current Technologies that Influence Compaction...

Asphalt Pavement Compaction

Typical Asphalt Pavement Density requirements are based on **what was achievable yesterday**.

Today we have made **significant advancements** in material and construction technology and techniques.

Today we are **also placing more and more materials** containing higher levels of recycled, reclaimed, and reuse (RRR) products.

Challenge: Can we use today's technology and techniques to **raise-the-bar on in-place density** to improve durability and thus extend pavement service-life?

Enhanced Durability through Increased In-Place Pavement Density

- Assumption Pavement density can be increased with a minimum of additional cost
- Long-Term Objective States will increase their in-place asphalt pavement density requirements resulting in increased pavement life

Importance of Compaction

Importance of Compaction

"Compaction is the single most important factor that affects pavement performance in terms of durability, fatigue life, resistance to deformation, strength and moisture damage." – C. S. Hughes, NCHRP Synthesis 152, *Compaction of Asphalt Pavement*, (1989)

"The amount of air voids in an asphalt mixture is probably the single most important factor that affects performance throughout the life of an asphalt pavement. The voids are primarily controlled by asphalt content, compactive effort during construction, and additional compaction under traffic." – E. R. Brown, NCAT Report No. 90-03, *Density of Asphalt Concrete*— *How Much is Needed?* (1990)

Four Million Miles of Roads in US

Federal = 3% State = 20% Local = 77%

2/3 are Paved (1/3 Unpaved) 94% of Paved have an Asphalt Surface +2.5 Million Miles of Asphalt Roads!

Source: FHWA 2011

Budgets vs. Needs

Source: FHWA 2013

Budget 🖿 Need — ASI

Durability Concerns

- asphalt institute
- SAPA's, AI, and NAPA all concerned with durability
 - Need for more binder in the mix
- Many DOT's looking for ways to improve durability
 - Minimum binder contents
 - Optimize mix designs
 - Balance rutting with fatigue

Improved density typically not considered

Evolution of Traffic

- Interstate highways 1956
- AASHO Road Test 1958-62
 - still widely used for pavement design
 - legal truck load 73,280 lbs.
- Legal load limit to 80,000 lbs. 1982
 - 10% load increase
 - 40-50% greater stress to pavement
- Radial tires, higher contact pressure
- FAST Act raising load limit to 120,000 lbs. (in select locations)

Growth in Traffic Volumes and Loadings on the Rural Interstate System

Source: FHWA Highway Statistics 2014

Led to Rutting in 1980s

Which led to...Superpave

- Fixed the rutting problem
- Gyratory compaction lowered binder contents
- Add in higher and higher recycled materials?

- To minimize prevent further consolidation
- To provide shear strength and resistance to rutting
- To improve fatigue cracking resistance
- To improve thermal cracking resistance
- To ensure the mixture is waterproof (impermeable)
- To minimize oxidation of the asphalt binder

Compaction also provides a smooth, quiet driving surface

All are elements of durability

Improved Compaction = Improved Performance

A BAD mix with GOOD density out-performed a GOOD mix with POOR density for ride and rutting.

WesTrack Experiment

For both thicker and thinner, reduced in-place density at the time of construction results in significant loss of Service Life!

In-Place Voids vs Fatigue Life

asphalt institute

Tensile Strength & Moisture Susceptibility vs. Air Voids AASHTO T 283

Sample Air Voids

Asphalt Institute Research

NCAT Report 16-02 (2016)

Literature Review on connecting in-place density to performance

- 5 studies cited for fatigue life
- 7 studies cited for rutting
 - "A 1% decrease in air voids was estimated to improve the fatigue performance of asphalt pavements between 8.2 and 43.8%, to improve the rutting resistance by 7.3 to 66.3%, and to extend the service life by conservatively 10%."

Average Decrease in Rut Depth for 1% Decrease in Air Voids

Average Increase in Fatigue Life for 1% Decrease in Air Voids

Research from New Jersey

asphalt institute

...and then there's permeability

Photo: Wes McNett

Permeability at the Longitudinal joint

Permeability can be Catastrophic

NCAT Permeability Study

Finer NMAS mixes generally less permeable at equivalent air void levels!

From NCAT Report 03-02

"...to ensure that permeability is not a problem, the in-place air voids should be between 6 and 7 percent or lower. This appears to be true for a wide range of mixtures regardless of NMAS and grading." – NCHRP 531

Cost of Compaction

asphalt institute

Aggregates and binders are expensive in comparison

Mixture Factors Affecting Compaction

- Mix Properties
 - Aggregate
 - Gradation
 - Angularity
 - Asphalt Cement
 - Grade
 - Quantity
 - Volumetrics
 - Air Voids
 - VMA
 - VFA
 - Balancing a Mix

Choosing a Gradation

Courtesy of NCAT

asphalt institute

Choosing a Gradation

Courtesy of NCAT

asphalt institute

NCAT Test Track 1st Cycle

Coarse, intermediate, and fine gradations. No differences in rutting performance!

Courtesy of NCAT

Effect of Aggregate on Compaction

• **GRADATION**

- continuously-graded, gap-graded, etc.

• SHAPE

- flat & elongated, cubical, round

• SURFACE TEXTURE

- smooth, rough

• STRENGTH

- resistance to breaking, abrasion, etc.

Effect of Binder on Compaction

• PERFORMANCE GRADE

 Binder grades that are "stiffer" at paving temperatures can make the mix more difficult to compact

• MODIFIED BINDERS

- In general, the grades with modifier added tend to be stiffer and more difficult to compact.
- The time available for compaction tends to decrease as the amount of modifier increases.

Mix Design – Balancing Act

Smooth Quiet Ride Skid Resistance

Strength/ Stability

Rut Resistance

Shoving

Flushing Resistant

Durability

Crack Resistance

Raveling

Permeability

ETG Definition: "Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."

A mix design that is balanced for rutting and cracking resistance.

Balanced Mix Design Approach

asphalt institute

- General Procedure
 - Design and test mix for Rutting
 - Test mix for Cracking and/or Durability
 - Performance Testing
- States that are using this approach
 - Texas
 - Louisiana
 - New Jersey
 - Illinois
 - California
 - Wisconsin

NJDOT/Rutgers

- Balanced Mixture Design Concept
- Mixes are designed to optimize performance
 - Not around a target air void content
- Take an existing mix design
 - Start at a "dry" binder content
 - Add binder at 0.5% increments measure rutting and cracking
 - Determine range where rutting and cracking are optimized
 - Conduct volumetric work
- Performance criteria (limits) already determined

New Jersey Balanced Design

Courtesy of Tom Bennert

Balanced Mix Design Research – New Jersey

- Most NJ mixes found to be below (dry) of the balanced area
- Plant QC air voids requirements need to be reevaluated to account for the added binder
- Changes in production volumetrics are likely required to move the mixes in the right direction

FHWA Performance Based Mix Design

	Fatigue Cracking	Rutting
Design Air Voids For every 1% increase	40% increase	22% decrease
Design VMA For every 1% increase	73% decrease	32% increase
Compaction Density For every 1% lower in-place Air Voids (Increasing Density Improved Both!)	19% decrease	10% decrease

- Design at 5% air voids and compact to 5% voids in field (95% G_{mm})
- Lower design gyration to increase in-place density
 - No change in rutting resistance
 - No change in stiffness
 - Improve pavement life
 - Reduced aging
- Maintained Volume of Eff. Binder (V_{be})
 - Increased VMA by 1%

asphalt institute

Why are the target values for lab-molded air voids and roadway air voids different? Lab-molded air voids simulate the in-place density of HMA after it has endured several years of traffic in the roadway.

Lab Screening

- Flow Number (rutting evaluation)
 - N100/4/7 840 cycles
 - N30/5/5 1180 cycles **↑**
- Stiffness
 - N100/4/7 2,072 MPa
 - N30/5/5 2,645 Mpa 个

Note: gradations had to be altered to maintain Effective Asphalt Contents

Courtesy of Gerald Huber

Question?

Does lowering gyration level - i.e. compactive effort in the lab - always increase percent binder in the mix?

NO!

Why – Because the gradation can be changed to lower the binder content back to where it began.

Will lowering the gyration levels always increase field densities?

NO!

Why – Because specifications will often dictate final density

Compaction Factors

asphalt institute

- Outside The Roller Operator's Control
 - Factors Affecting Compaction
 - Forces of Compaction and Roller Types
- Within The Roller Operator's Control
 - Roller Operations and Rolling Procedures

Items Outside the Roller Operator's Control

Factors in Affecting Compaction

asphalt

- Base Condition
- Lift Thickness vs. NMAS
- Laydown Temperature
- Ambient Conditions
- Cooling Rates
- Balancing Production Through Compaction
- Paver Operations

Lift Thickness' Effect on Compaction

- Aggregates need room to densify
- Too thin vs. NMAS leads to:
 - Roller bridging
 - Aggregate lockup
 - Aggregate breakage
 - Compaction Difficulties
- NCHRP Report 531 (2004)
 - Fine Graded Mix—Minimum Thickness = 3 X NMAS
 - Coarse Graded Mix—Minimum Thickness = 4 X NMAS
 - SMA Mix—Minimum Thickness = 4 X NMAS

Superpave Mix Designations

Superpave Mix Designations	Maximum Size	Minimum Compacted Lift Thickness (Fine)	Minimum Compacted Lift Thickness (Coarse)
37.5 mm (1-1/2 inch)	50.0 mm (2 inch)	112.5 mm (4-1/2 inch)	150 mm (6 inch)
25.0 mm (1 inch)	37.5 mm (1-1/2 inch)	75 mm (3 inch)	100 mm (4 inch)
19.0 mm (3/4 inch)	25.0 mm (1 inch)	57 mm (2-1/4 inch)	76 mm (3 inch)
12.5 mm (1/2 inch)	19.0 mm (3/4 inch)	37.5 mm (1-1/2 inch)	50 mm (2 inch)
9.5 mm (3/8 inch)	12.5 mm (1/2 inch)	28.5 mm (1-1/8 inch)	38 mm (1-1/2 inch)
4.75 mm (3/16 inch)	9.5 mm (3/8 inch)	14.25 mm (9/16 inch)	19 mm (3/4 inch)

Thickness Matters

asphalt institute

- Based on the NY 9.5mm NMAS (75 gyrations) mixture data:
 - From <u>5x</u> NMAS to <u>4x</u> NMAS (47.5 mm ↓ to 38.0 mm), there is 1.5% decrease in density.
 - From 4x NMAS to 3x NMAS (38.0 mm \downarrow to 28.5 mm), there is a further 4.1% decrease in density.
- Ideal consider placing thicker mats increasing the thickness to nominal maximum aggregate size ratio
- Realistical lift thickness likely may not be increased due to geometric and/or budgetary limitations
- Solution consider using smaller nominal maximum aggregate size mixtures for a given lift thickness (increasing the thickness to nominal maximum aggregate size ratio)

• Best Practices for Specifying and Constructing HMA Longitudinal Joints

Tack Coat Best Practices

 Both these sub-sections built directly from the two 4-hr workshops developed on each of these critical topics. Those workshops, and related info, can be viewed at:

www.asphaltinstitute.org/engineering

Both topics directly relate to better in-place density

Newer Technologies to Enhance Compaction

- Warm Mix Asphalt (WMA)
- SHRP2 Infrared (IR)
- Intelligent Compaction (IC)

Achieving Increased In-place Density

State #1				
	Location Mode Passes Equipment			
	Delivery	MTV		Roadtec SB-2500
Control	Control Breakdown	Static	9	CAT CB54
COILLOI DIEAKUOWII		Static	9	CAT CB54

Courtesy Ray Brown

Courtesy Ray Brown

- Using vibratory mode resulted in no change in density
- Adding pneumatic increased density

	State #2			
	Location	Mode	Passes	Equipment
	Delivery			End Dumps
Control	Breakdown	Vibratory	7	BW 161 AD-5 (10 ton)
Test Section	Breakdown	Vibratory	9	Same

Courtesy Ray Brown

Average of 6 cores each / Reference is $\rm G_{mm}$

- Only 1 compaction roller needed to meet specification
- Adding 2 passes increased % density

Achieving Increased In-place Density

	State #3			
	Location	Mode	Passes	Equipment
	Delivery	Bottom Dumps		Cedar Rapids MS2
	Breakdown	Vibratory	5	Dynapac CC 624
		Vibratory	5	Dynapac CC 624
Control		Pneumatic	7	CAT CW35
	Intermediate	Pneumatic	7	Hamm GRW18

Courtesy Lee Gallivan

State #3		
Experiment	Contractor's Compactive Effort	
Test Section 1	Added 1 vibratory roller – Hamm HD130 (5 total rollers)	
Test Section 3	Added 0.3% asphalt (5 total rollers)	

Courtesy Lee Gallivan

Average of 8 core densities each

- 4 compaction rollers needed to meet specification
- 1 additional roller did not change density
- Mixture design adjustment resulted in density increase

State #4				
Location Mode Passes Equipment				Equipment
	Delivery	MTV		Weiler E2850
	Breakdown	Vibratory	5	Dynapac CC 624 HF
Control		Vibratory	5	Volvo DV 140B
	Intermediate	Pneumatic	11	Hamm GRW280

Courtesy Lee Gallivan

State #4		
Experiment	Contractor's Compactive Effort	
Test Section 1	Added 1 vibratory roller – Dynapac CC 524 HF (4 rollers)	
Test Section 3	Added 0.3% asphalt (4 rollers)	

Courtesy Lee Gallivan

Selecting Optimum Asphalt Content with Air Void Regression

Selecting Optimum Asphalt Content with Air Void Regression

State #4					
ExperimentDensity Density Results (% G_mm)Change					
Control	93.5				
Test Section 1	95.0	+ 1.5			
Test Section 3	95.4	+ 1.9			

Average of 12 nuclear gauge readings each

- Control achieved maximum incentive
- Additional roller and mix design adjustment resulted in density increase

State #5						
	Location Mode Passes Equipment					
	Delivery MTV Terex CR622RM					
	Drealtdorm	Vibratory 5		Volvo DD 138 HFA		
Control	Breakdown	down Vibratory 5	Volvo DD 138 HFA			
	Intermediate	Pneumatic	5	Hypac C530 AH		

Courtesy Ken Hobson

State #5							
	Location Mode Passes Equipment						
Test		Oscillatory	5	Hamm HD+ 120i			
Section #1	Breakdown	Oscillatory	Bomag BW 190 ADO				
Test Section #2	Same rolling pattern as control Additional asphalt: 0.3% more AC						

Courtesy Ken Hobson

Average of 3 cores each

State #6						
	Location Mode Passes Equipment					
	DeliveryMTVRoadtec SB 2500					
Control	Breakdown	Vibratory	5V 2S	CAT CB 534 XW		
and Test	Dreakuown	Vibratory	5V 2S	CAT CB 534 XW		

Courtesy Miguel Montoya

State #6

Optimum asphalt content

- Modified asphalt mixture design procedure
 - Air voids, gyrations, and VMA
- Additional asphalt content
 - ▼ 0.3% in the asphalt mixture design
 - **▼** 0.1% during field production

Performance testing

- Flow Number
- Dynamic Modulus

Achieving Increased In-place Density

State #7					
	Construction Information				
Delivery	MTV: Roadtec SB-1500				
Control Current minimum sublot specification					
Test Section	Test Section New PWL specification				

Courtesy Lee Gallivan

State #7							
	Location Mode Passes Equipment						
		Vibratory	4V 1S	CAT CB 54B			
Test	Breakdown	Vibratory	4V 1S	Sakai WS800			
Section	Section		4V 1S	CAT CB 54B			
	Joints	Vibratory		??			

Courtesy Lee Gallivan

State #7						
ExperimentDensity Results (%Gmm)Change ChangePay FactorStd. Dev. (Statewide)						
Statewide Avg.	93.6					
Control	94.4		0.97	1.55		
Test Section 1	96.1	+1.7	1.04	0.95*		

Average of 5 cores each

*Implementing Percent Within Limits (PWL) specification

State #8							
	Location Mode Passes Equipment						
	Delivery MTV Weiler E2850						
Control	Breakdown	Vibratory	8V 1S	CAT CB 68B			
Control	Intermediate Pneumatic 15 Dynapac CP30						
Test Section	Decrease roller spacing Same						

Courtesy Jim Huddleston

Standard deviation changes from 1.58 to 0.67 from individual tests

- Additional effort by contractor was minimal
- Consistency improvements showed LSL could be 1% higher

Achieving Increased In-place Density

- Optimum Asphalt Content
- Consistency
- Best Practices
- New Technology

State #9						
	Location Mode Passes Equipment					
	Delivery	MTV		IR MC 330		
Control	Breakdown	Vibratory Static	3 6	CAT CB 64B		
	Intermediate	Static	7	Hamm HD+ 90		

Courtesy Ray Brown

State #9					
	Location	Mode	Passes	Equipment	
Test Section	Breakdown	Vibratory Static	5 2	CAT CB 64B	
#1	Intermediate	Static Oscillatory	2 3	Hamm HD+ 90	
Test Costion	Breakdown	Vibratory	7	CAT CB 64B	
Test Section #2	Intermediate	Static Oscillatory	2 3	Hamm HD+ 90	

In Support Start

Courtesy Ray Brown

The second second second

- Density increase was not significant
- Density results exceeded current specification

Achieving Increased In-place Density

• Optimum Asphalt Content

- Consistency
- Best Practices
- New Technology

QC Tools SHRP2 Products

Rolling Density Meter (RDM)

 Density from dielectric constant

Thermal Temperature Scanner (IR Scan)

- Paver speed
- Temperature

Courtesy Lee Gallivan

Can We Achieve Increased In-place Density?

Test sections had increased density (% G_{mm}):

- 8 of 10 States achieved > 1.0% increase
- 7 of 10 States achieved > 94.0% G_{mm}
- 6 of 10 States achieved > 95.0% G_{mm}

Will there be changes?

8 of 10 States are changing specifications

How Do We Achieve Increased In-place Density?

Measuring density (1) **Reference density (1)** Density of pavement to meet requirements (4) • Some at 90 to 91% G_{mm} • Others at 94% G_{mm} Type of specification (2) • 22 states use minimum lot average ○ 25 states use PWL **x** Impacts contractors' target and consistency Consistency (2) • Standard deviations <1.00 were achievable

How Do We Achieve Increased In-place Density?

Incentives (3)

- 37 states have incentives: range from 1 to 10%
- Average 2.9%

Mixture design changes (5)

- Many states changing Superpave to get more asphalt
- Must also look at density specification
- New technologies (2)
- Did not help improve density, but were a good troubleshooting tool

Increased compaction = Increased Performance Better "Return on Investment" for the taxpayers

More Successful Pavements = More Tonnage for the HMA Industry !!!

Thank you for your time!!!

Thank you

Gregory A. Harder, P.E Regional Engineer Asphalt Institute 5791 Route 80 Tully, NY 13159

Ph: 315-238-7000 Fax: 315-238-7000

gharder@asphaltinstitute.org