

of Engineers®

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

DEVELOPING ELECTRICALLY HEATED FLEXIBLE PAVEMENTS FOR SELF DEICING APPLICATION

Ahmed Saidi, Ph.D.

Center for Research & Education in Advanced Transportation Engineering Systems (CREATES) 109 Gilbreth Pkwy Mullica Hill, NJ 08062 Phone: (856) 256-5395 Email: creates@rowan.edu

BUILDING STRONG

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Acknowledgment

- CREATES Research Team
 - Ashith Marath
 - > Ayman Ali Ph.D.
 - ➢ Yusuf Mehta Ph.D., P.E.
 - Rahaf Hassan
- ERDC Team
 - Mohamed Elshaer Ph.D.
 - Danielle Kennedy

Asbury Carbons (Austin Bowers)

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

In This Presentation...

- Background & problem statement
- Research objectives
- Materials and design of ECA mixtures
- Construction of Pavement Test Strips
- Heating and Field Performance of ECA

Conclusions & recommendations

BUILDING STRONG

Background & Problem Statement

CRREL

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Background

5

Snow & Ice Mitigation Techniques

Use of chemicals and salts

Snow plowing

Source: Willowpix/iStock

Problem Statement

Labor intensive and time-consuming techniques Operational delays, safety concerns

Deteriorating pavement structures \rightarrow Durability issues

Increased salinity \rightarrow Groundwater contamination

BUILDING STRONG

Evaluate the efficiency of electrically-heated pavements for deicing applications in cold regions

BUILDING STRONG®

8

Research Objectives

- Develop electrically-conductive asphalt (ECA) mixtures using different dosages of conductive additives
- Construct full-scale pavement test strips using selected electrically-conductive mixtures
- Monitor heating performance and power consumption for each test strip
- Evaluate the field performance of ECA mixtures

Materials and Design of Conductive Asphalt Mix

Design Parameters

High Performance Thin Overlay (HPTO) JMF			
NMAS	4.75 mm		
Air Void	3.5 ± 1%		
Optimum Binder Content	7.7 %		
Gmm	2.459		
Dust to Binder Ratio	0.9 (Target : 0.6 – 1.3)		
Binder	PG 76-22		

BUILDING STRONG®

CRREL

12

ECA Mix Preparation

BUILDING STRONG®

CRRE

Resistivity Testing and Results

0 0

Resistivity Testing and Results

Note: ECA mixes with only carbon fiber had " overflow" electrical resistivity

Mix with minimum electrical resistivity: HPTO mixture at 8.1 % binder content, 30% graphite (large flakes) + 1% CF

Construction of Pavement Test Strips

Construction Steps

Pavement Strips' Structures

Proprietary Heated Pavement (Heatpave)

Electrode Installation & Spacing

22

Strip Instrumentation

Heating Performance of ECA Pavement Strips

Methodology for Power Supply

Method 1:

- System run manually
- Both the section was set ON at same time

Method 2:

 Controlled by embedded sensor (controller)
Heating is ON at 46° F and OFF at 52° F

BUILDING STRONG

Surface Temperature Profile

Surface Temperature Distribution

Higher standard 10 **Surface Temperatures** deviation indicates non-8 uniformity 15.0000 7.5000 6 Rowan strip outperforms (better heat distribution) 7.5000 5000 Heatpave of Std. dev Electrode spacing: No effect Surface thermocouple -2 22 Difference of Surface temperature and Amplent temperature (degF) $\rightarrow \rightarrow \rightarrow$ Heating

26

Electrode spacing 6 in. Vs 12 in.

RowanUniversity

CENTER FOR RESEARCH & EDUCATION IN

ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Methodology for Power Supply

and a grand a short

-11.....

Method 2:

BUILDING STRONG

CRREI

Temperature at System Trigger

Heating – Time Ratio (HTR)

Heating performance to maintain surface

45

HTR value100% → Poor Performance

HTR Value $0\% \rightarrow$ Best Performance

Heating – Time Ratio (HTR)

Power Consumption

Average of power consumed by each run cycles during time period of September 2021 – March 2022

Section	Average Power (Watts/ft ²)	Std. Deviation	Operating Cost (¢/ft2.hr)
Heat Pave	19.75	0.45	0.25
Rowan 6 in.	11.90	0.25	0.15
Rowan 12 in.	5.95	0.25	0.07

Operating Heatpave with an area of 100,000 ft2 for 1 hour will cost \$252 (considering ¢12.78/kWh – Commercial rate in NJ)

System Efficiency during Snowfall New Jersey, January 3rd 2022

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATIO

03:30 PM Heatpave and Control 03:30 PM Rowan Section Heating Duration: 9.5 hours

ECA Field Performance

Accelerated Pavement Testing

- > APT program: CREATES Heavy Vehicle Simulator (HVS)
- Target no. of passes: 300,000
- Load: 40 kN (Truck)
- Tire pressure: 100 psi
- Sensors: 2 asphalt strain gauges & 2 pressure cells
- Loading mode: Bi-directional
- Wander: Yes; 8 inches
- Test temperature: 50°F

Test Strips after HVS Loading

Control

Heatpave

Rowan

Mechanistic Responses

Heating Performance - Post Loading

BUILDING STRONG®

39

Power Consumption

Strip	Before Loading (Watts/ft ²)	After Loading (Watts/ft ²)	% Change
Heat Pave	19.75	18.82	- 4.7%
Rowan 6 in.	11.90	11.53	- 3.1%
Rowan 12 in.	5.95	5.76	- 3.2%

CRREL

40

Summary of Findings

Performance Factors	Ranking of sections based on performance			
	1	2	3	
Surface Heating Performance	Rowan 6in.	Heatpave	Rowan 12 in	
Surface Temperature Distribution	Rowan 6 in.	Rowan 12 in.	Heatpave	
Power Consumption	Heatpave (highest)	Rowan 6 in.	Rowan 12 in.	

CRREL

Summary of Findings

- Heatpave generated more heat; however, that was not reflected on surface temperature – Conductive layer at higher depth
- Power consumption was the highest for Heatpave (~20 W/ft²), followed by Rowan 6 in. spacing strip (~12 W/ft²) and 12 in. spacing strip (~6 W/ft²)
- Rowan section showed effective deicing performance (run time ~ 10 hours)

Reduction in power consumption of test section was observed after HVS

CRREL loading (3% - 5%)

Conclusions & Recommendations

Conclusions & Recommendations

Design of ECA mix

Use of combination of graphite and carbon fibers ensures better conductivity

Ease of construction

Conductive asphalt mixtures are easier to work with compared to conductive tack coat material

Construction challenge

Formation of <u>fiber clumps</u> (or hot spots)

Impact of electrode spacing

Shorter spacing → Better heating Less impact on surface temperature uniformity

BUILDING STRONG

Conclusions & Recommendations

Heating Efficiency

ECA mixtures showed <u>best heating performance</u> along with a <u>less power</u> <u>consumption</u>

Electrical Supply

Higher voltage (>20V) is required when ambient temperature is <10°F

Control of Power Supply

Automatic control is recommended

Other factors should be considered in future studies

- Thermal conductivity of ECA layer
- Thickness ratio of asphalt capping layer and ECA layer
- CREE Calibrate and validate the finite element model of ECA pavements

Assess the performance of ECA pavements in Alaska (CRREL test facility)

Thank You!

Ahmed Saidi

Center for Research & Education in Advanced Transportation Engineering Systems (CREATEs) 109 Gilbreth Pkwy Mullica Hill, NJ 08062 Phone: (856) 256-5395 Email: <u>creates@rowan.edu</u> Web.: www.rowan.edu/creates

