

Best Practices for Using Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

67th Annual NJ Asphalt Paving Conference

March 5, 2024

Presented by: Ali Raza Khan

Graduate Research Fellow Center for Research and Education in Advanced Transportation Engineering Systems (CREATEs) at Rowan University (RU) khanal88@rowan.edu

Outline

- What is RAP and its uses?
- Processing and Managing RAP
- RAP Sampling and Testing Best Practices
- Mix Design of Asphalt Mixtures Containing RAP
- "High" RAP in Asphalt Mixtures
- Research Studies on RAP
- Final Remarks

Reclaimed Asphalt Pavement (RAP)

- □ RAP consist of:
 - □ Asphalt binder: often aged
 - □ Aggregate: quality aggregates
- Reclaiming process:

Milling Pavement Demolition Waste plant mix Source: Dykes paving, Preferred paving, Pavement recyclers

AAPA Study 2010

RAP Usage and It's Impacts

Average Rap Use in Mixture by States

Variation in RAP usage by different states from 2013 to 2017

5

Usage of RAP in the United States

- Majority of states (38) limited
 usage of RAP to 30%
- Out of 38 states:
 - 16 states restricted to 20%
 - 12 states restricted to 25%
 - 10 states restricted to 30%
- Only 2 states identified in interval of 45% and 50%
- Southeast states (8 out of 13 states) observed to allow 30%
 RAP and above

RAP Quantification Basis in the United States

- 20% allowable RAP content indicates incorporation of 200 kg of RAP material for every ton of asphalt mixture
- Qualifying Measures of RAP
 - o 19 states- use binder replacement
 - o 28 states- use mixture replacement
 - o 3 states-unknown divergence

Impact of RAP on Virgin Binder

□ Guidelines

- □ Up to 15% RAP: no change in binder grade;
- □ 20 to 25% RAP: use 1 temp. grade lower;
- □ Above 25%: Test RAP binder.
- Alternative: Conduct regional studies to determine
 RAP binder properties.

Impact on Viscosity

Authors PMA binder grade RAP binder grade		Singh and Sawant (2016) PG 76-xx PG 88-xx	Kim et al. (2009) PG 76-22 PG 82-16	Roque et al. (2015) PG 76-22	
				Viscosity at 135°C (Pa·s)	RAP %
0% ⁽¹⁾	1.25	1.73	1.46		
15%	1.34	1.81	-21		12
20%	-	-	1.78		1.64
25%	1.36	1.79	-		-
30%	-	-	1.98		1.70
35%	171	1.82	-		
40%	1.38	-	2.24		1.90
100%	1.54	2.24	.=3		

- Increase in influence: 1.1 to 1.2 times for 15 to 35% RAP
- Sudden surge: 1.4 times usage raised to 40% RAP
- Reduction in viscosity leads to reduction in workability of mix and lower density

Challenges of RAP

- Unknown aggregate and binder source
- Age of the RAP
- Variability due to poor material management
- Non fractionation of the RAP
- Less Knowledge in designing the mix

Material Management

Real Challenge: How to manage and process RAP?

Processing and Managing RAP

Purpose of Processing RAP

- □ Main goal of processing RAP:
 - □ Create uniform stockpile of RAP;
 - Separate or break large agglomerations of RAP;
 - Reduce maximum aggregate particle size to use for surface mix;
 - \square Minimize the additional P_{200} .

Source: FHWA -HRT-11-021

Processing RAP (Same Source)

13

Processing RAP (Multiple Source)

Source: NAPA quality improvement series 129

RAP Sampling

- Take representative <u>random</u> samples (AASHTO T2)
 - □ Minimum 5, preferably \geq 10 samples
 - Test portion of each random sample (for <u>binder content</u> and <u>gradation</u>)
 - Combine remainder samples to have one representative sample (for <u>mix</u> <u>design</u> purpose)

Source: FHWA -HRT-11-021

RAP Testing

RAP Specific Gravity?

- □ Method 1
 - Extract aggregate from solvent, divide into coarse and fine, calculate G_{sb} of aggregate
- Method 2
 - $\Box \quad \text{Calculate } G_{mm(RAP)} \text{ from } P_{b(RAP)} \text{ and } G_{b(RAP)}$

Mix Design of RAP Mixtures

Factors Governing Usage of RAP

- Fractionation
- Blending charts
- Performance tests
- Virgin binder grade selection
- Volumetric criteria

The plot represents the number of states that use each factor as a governing criterion in using

Volumetric Criteria

Laboratory Mix Design for RAP Mixtures?

Plant Production and Verification?

Performance Tests

Number	State	Performance Test
1	New Jersey	HWT, OT
2	South Dakota	TSR, APA
3	Vermont	TSR
4	Illinois	TSR. HWT, IFIT
5	North Carolina	Rut test
6	Washington	HWT

✤ Rutting resistance:

• Hamburg Wheel Tracking (HWT), Asphalt Pavement Analyzer (APA), and Rut tests

Tensile Strength Ratio (TSR) part of Superpave specification by states:

o South Dakota, Vermont, Illinois, Georgia, Arkansas, California, and Connecticut

✤ New Jersey: Overlay test

Illinois: Illinois Flexibility Index test

♦ Georgia: Permeability test

14	Texas	HWT	
15	Connecticut	TSR	
16	Louisiana	LWT, SCB	

HWT = Hamburg Wheel Tracking; OT = Overlay Test; TSR = Tensile Strength Ratio; APA = Asphalt Pavement Analyzer; IFIT = Illinois Flexibility Index Test; LWT = Hamburg Loaded Wheel Tester; SCB = Semi-Circular Bend test.

Performance Testing

SCB

OT

What is High RAP?

□ High RAP

- Mix contain RAP >25%
- Require softer virgin binder to balance stiffness
- Require determination of binder grade
 - High PG DSR for Original and RTFO aged binder
 - □ Intermediate PG□DSR for RTFO aged binder
 - □ Low PG□ BBR test for RTFO aged binder

BBR

Blending of High RAP?

- □ Two option are followed:
 - Blending at known RAP %age
 - □ Blending with a known virgin binder grade

Blending of High RAP?

Blending at known RAP %age

$$T_{virgin} = \frac{T_{blend} - (\% RAP \times T_{RAP})}{(1 - \% RAP)}$$

Where:

- T_{virgin} = Critical temperature of virgin asphalt binder (high, intermediate, or low).
- T_{Blend} = Critical temperature of blended asphalt binder (final desired) (high, intermediate, or low).
- %RAP = Percentage of RAP expressed as a decimal.
- T_{RAP} = Critical temperature of recovered RAP binder (high, intermediate, or low).

Blending of High RAP?

□ Blending with known virgin binder grade

$$\% RAP = \frac{T_{blend} - T_{virgin}}{T_{RAP} - T_{virgin}}$$

- Need to be determined at high, low and intermediate temperature
- Select range of content meeting all temperature requirements

Research Studies on RAP

Two Studies: <u>Key</u> findings

□ FHWA-HRT-11-021

- Reclaimed asphalt pavement in Asphalt Mixtures: State of the practice
- NAPA: Quality Improvement Series 129
 - Best practices for RAP and RAS Management
- □ TxDOT Project 0-6947 (2020)
 - Revised Allowable Maximum Recycled Binder Ratio (RBR)
 Specification
- Laboratory and field evaluation of HMA with High RAP

FHWA-HRT-11-021

- Widespread use of high RAP require support from State
 DOTs and contractors;
- Estimated use of RAP was 12% across US, according to
 State DOTs it can go up to 30%;
- RAP mixtures need to follow volumetric based mix design criteria; and
- Main challenge to increase use of RAP is the processing of RAP.

NAPA: Quality Improvement Series 129

- Good management start with uncontaminated RAP;
- Milling from single project produce RAP with consistent properties;
- RAP from multiple sources can be processed to produce uniform and fractionated RAP stockpiles; and
- Frequent sampling, testing and analysis of RAP is vital to good management of RAP.

TxDOT Project 0-6947 (2020)

- Addition of RAP compensate for virgin soft binder high PG grade but not the elastic recovery;
- □ Virgin binder low grade does not effect RAP low PG grade;
- Rutting performance enhanced with addition of RAP;
- With addition of RAP: G*/Sinδ increases; S and m-value decrease; and
- □ Not all recycling agents produce the same results.

Laboratory and Field Evaluation

- □ 30%, 35% and 40% RAP was included into the HMA;
- RAP was fractionated with size >8mm, effective in improving volumetric properties;
- Three test section constructed on Highway 6, Iowa with densities >94%.
- High and low PG grades increased with addition of RAP;
- HWTT test on field cores showed that with increase in RAP
 %age, rutting performance enhanced.

Laboratory and Field Evaluation

- SCB test results indicate drop in fracture properties with the addition of RAP;
- 8 months condition survey results demonstrate that 40%
 RAP section performed well compared to 35% and 30%
 RAP sections.
- 27 months condition survey results showed similar performance results for all section.

Final Remarks

Final Remarks

- Proper *stockpiling* will help to ensure better management of RAP materials,
- □ RAP processing depends on the *sources* available;
- Fractionating RAP is the key *parameter* for consistent material properties and volumetric based mix design.
- Binder properties and performance grade need to be *determined* as per procedure mentioned;
- High RAP *binder grade* is the key parameter for selection of RAP %age,
- Literature focused on the better management of RAP materials by processing the RAP.

Final Remarks

- Rutting and cracking tests were used as performance based criteria for RAP mixtures.
- Widespread application require support from State DOT's and contractors.

Thank You!

Center for Research and Education in Advanced Transportation Engineering Systems (CREATEs) Department of Civil and Environmental Engineering Rowan University

- Montana Department of Transportation]. (2020). Standard and Supplemental Specifications for Road and Bridge Construction 2020 Edition.
- □ Agency, V. T. (2018). Vermont Agency of Transportation.
- Al-Qadi, I. L., Qazi, A., & Carpenter, S. H. (2012). Impact of High RAP Content on Structural and Performance Properties of Asphalt Mixtures. Research Report FHWA-ICT-12-002, 12, 1–107.
- California DOT. (2021). Revised standard specifications dated 10-18-19 organization. Hct, 4–19.
- Caltrans. (2018). Standard specifications, State of California, California State Transportation Agency, Department of Transportation. Caltrans, 916, 1155. http://caltrans-opac.ca.gov/publicat.htm%0Ahttp://www.dot.ca.gov

- DOT, T. (2021). Tennessee of transportation standard specifications for road and bridge.
- DOT, Wisconsin. (2022). 460 Hot Mix Asphalt Pavement. November 2021.
- Illinois DOT. (2022). Standard Specifications for Road and Bridge Construction Standard Specifications for Road and Bridge Construction.
- Johnson, E., & Author, P. (2013). Recycled Asphalt Pavement : Study of High-RAP Asphalt Mixtures on Minnesota County Roads. May.
- *C* Kentucky DOT. (2019).
- *Khosla, N. P. (2017). Characterization of different rap sources. March.*
- Kim, S., Sholar, G. A., Byron, T., & Kim, J. (n.d.). Performance of Polymer-Modified Asphalt Mixture with Reclaimed Asphalt Pavement. Table 1, 109–114. https://doi.org/10.3141/2126-13
- Mcdaniel, R. S., Lafayette, W., Anderson, R. M., & Peterson, R. (2000). Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method Submitted by : 30(October).
- McDaniel, R., Soleymani, H., Anderson, R. M., Turner, P., Peterson, R., & Harrigan, E. T. (2001). Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method : Technician's Guidelines. National Cooperative Highway Research Program Research Results Digest, 253.

- DOT Colorado. (2021). Standard Specifications Road and Bridge Construction.
- DOT, G. (2020). Georgia Department of Transportation Office of Materials and Research Standard Operating Procedure (SOP) 41 Approval of Recycled Asphalt Pavement (RAP) for use in Asphalt Mixtures. 1–7.
- DOT, I. (2018). 2018 Standard Specifications for Highway Construction.
- DOT, K. (2015). Kansas Department of Transportation Special Provision To the Standard Specifications , Edition 2015. 3, 7–8.
- DOT, M. (2021). Supplemental specifications section 101 section 102 section 104 indemnification , bonding , and insurance. 2021(March 2020).
- DOT, N. (2017). Nebraska Standard Specifications for Highway Construction. May 2016, 13.
- DOT, N. D. (2020). Standard Specifications for Road and Bridge Construction.
- □ DOT, Okhlahoma. (2019).
- DOT, Oregon. (2021). Oregon Standard Specifications for Construction.

ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

- Zhou, F., S. Hu, & T. Scullion (2013a). Balanced RAP/RAS Mix Design and Performance Evaluation System for Project Specific Service Conditions. Report FHWA/ TX-13/0-6092-3. Texas A&M Transportation Institute, Texas A&M University, College Station, Texas.
- West, R., Michael, J., Turochy, R., & Maghsoodloo, S. (2011). Use of data from specific pavement studies experiment 5 in the long-term pavement performance program to compare virgin and recycled asphalt pavements. Transportation research record, 2208(1), 82-89.
- Newcomb, D. E., Epps, J. A., & Zhou, F. (2016). Use of RAP & RAS in high binder replacement asphalt mixtures: A synthesis. National Asphalt Pavement Association, Special Report, 213.
- Hong, F., Chen, D. H., & Mikhail, M. M. (2010). Long-term performance evaluation of recycled asphalt pavement results from Texas: Pavement studies category 5 sections from the long-term pavement performance program. Transportation Research Record, 2180(1), 58-66.
- Tran, N., Xie, Z., Julian, G., Taylor, A., Willis, R., Robbins, M., & Buchanan, S. (2017). Effect of a recycling agent on the performance of high-RAP and high-RAS mixtures: Field and lab experiments. Journal of Materials in Civil Engineering, 29(1), 04016178.
- Maupin Jr, G. W., Diefenderfer, S. D., & Gillespie, J. S. (2009). Virginia's Higher Specification for Reclaimed Asphalt Pavement: Performance and Economic Evaluation. Transportation research record, 2126(1), 142-150.

ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

- T. Nash, G. A. Sholar, and J. A. Musselman, Florida Department of Transportation, Transportation Research Record: Journal of the Transportation Research Board, No. 2294, Transportation Research Board of the National Academies, Washington, D.C., 2012, pp. 16–25. DOI: 10.3141/2294-02
- Thomas Bennert and Ali Maher, Forensic Study on the Cracking of New Jersey's Long-Term Pavement Performance Specific Pavement Study Sections. Transportation Research Record: Journal of the Transportation Research Board, No. 2371, Transportation Research Board of the National Academies, Washington, D.C., 2013, pp. 74–86.
- Copeland, A. (2011). Reclaimed asphalt pavement in asphalt mixtures: State of the practice (No. FHWA-HRT-11-021). United States. Federal Highway Administration. Office of Research, Development, and Technology.
- *West, R. C. (2015). Best practices for RAP and RAS management (No. QIP 129).*